Existence, Uniqueness and Asymptotic Behavior for the Vlasov-Poisson System with Radiation Damping
查看参考文献17篇
文摘
|
We investigate the Cauchy problem for the Vlasov-Poisson system with radiation damping. By virtue of energy estimate and a refined velocity average lemma, we establish the global existence of nonnegative weak solution and asymptotic behavior under the condition that initial data have finite mass and energy. Furthermore, by building a Gronwall inequality about the distance between the Lagrangian flows associated to the weak solutions, we can prove the uniqueness of weak solution when the initial data have a higher order velocity moment. |
来源
|
Acta Mathematica Sinica. English Series
,2017,33(5):635-656 【核心库】
|
DOI
|
10.1007/s10114-016-6310-9
|
关键词
|
Vlasov-Poisson system
;
radiation damping
;
velocity averages
;
weak solution
;
uniqueness
|
地址
|
1.
College of Science, Zhongyuan University of Technology, Zhengzhou, 450007
2.
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
文献收藏号
|
CSCD:5980139
|
参考文献 共
17
共1页
|
1.
Aubin J P. Un theoreme de compacite.
C. R. Acad. Sci. Paris Ser. I Math,1963,256:5042-5044
|
CSCD被引
1
次
|
|
|
|
2.
Bauer S. Radiative friction for charges interacting with the radiation field:Classical many-particle systems.
Analysis, Modeling and Simulation of Multiscale Problems,2006
|
CSCD被引
1
次
|
|
|
|
3.
Bouchut F. Averaging lemmas without time Fourier transform and application to discretized kinetic equations.
Proc. Roy. Soc. Edinburgh Sect. A,1999,148:19-36
|
CSCD被引
4
次
|
|
|
|
4.
Diperna R J. Global weak solutions of Vlasov-Maxwell system.
Comm. Pure Appl. Math,1989,42:729-757
|
CSCD被引
9
次
|
|
|
|
5.
Evelyne M. A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system.
Commun. Math. Phys,2016,346:469-482
|
CSCD被引
1
次
|
|
|
|
6.
Horst E. Weak solutions of the inintial valume problem for the unmodified nonlinear Vlasov equation.
Math. Methods Appl. Sci,1984,6:262-279
|
CSCD被引
4
次
|
|
|
|
7.
Kunze M. The Vlasov-Poisson system with radiation damping.
Ann. Henri Poincare,2001,2:857-886
|
CSCD被引
2
次
|
|
|
|
8.
Lions P L. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system.
Invent. Math,1991,105:415-430
|
CSCD被引
9
次
|
|
|
|
9.
Lieb E H.
"Analysis",2001
|
CSCD被引
11
次
|
|
|
|
10.
Loeper G. Uniqueness of the solution to the Vlasov-Poisson system with bounded density.
J. Math. Pures Appl,2006,86:68-79
|
CSCD被引
3
次
|
|
|
|
11.
Okabe S. On classical solutions in the large in time of the two-dimensional Vlasov equation.
Osaka, J. Math,1978,15:245-261
|
CSCD被引
1
次
|
|
|
|
12.
Perthame B. Time decay, propagation of low moments and dispersive effects for kinetic equations.
Comm. Partial Differential Equations,1996,21:659-686
|
CSCD被引
4
次
|
|
|
|
13.
Pfaffelmoser K. Global existence of the Vlasov-Poisson system in three dimensions for general initial data.
J. Differ. Equ,1992,95:281-303
|
CSCD被引
8
次
|
|
|
|
14.
Rein G. Collisionless kinetic equation from astrophysics - The Vlasov-Poisson system.
Handbook of Differential Equations:Evolutionary Equations, Vol.3,2007:383-476
|
CSCD被引
1
次
|
|
|
|
15.
Stein E M.
Singular Integrals and Differentiability Properties of Functions,1970
|
CSCD被引
143
次
|
|
|
|
16.
Zhang X. The Vlasov-Poisson system with infinite kinetic energy and initial data in L~P(R~6).
J. Math. Anal. Appl,2008,341:548-558
|
CSCD被引
1
次
|
|
|
|
17.
Zhang X. Global weak solutions to the cometary flow equation with a self-generated electric field.
J. Math. Anal. Appl,2011,377:593-612
|
CSCD被引
1
次
|
|
|
|
|