帮助 关于我们

返回检索结果

A Joint Laplace Transform for Pre-exit Diffusion of Occupation Times

查看参考文献17篇

文摘 For a < r < b, the approach of Li and Zhou (2014) is adopted to find joint Laplace transforms of occupation times over intervals (a, r) and (r, b) for a time homogeneous diffusion process before it first exits from either a or b. The results are expressed in terms of solutions to the differential equations associated with the diffusions generator. Applying these results, we obtain more explicit expressions on the joint Laplace transforms of occupation times for Brownian motion with drift, Brownian motion with alternating drift and skew Brownian motion, respectively.
来源 Acta Mathematica Sinica. English Series ,2017,33(4):509-525 【核心库】
DOI 10.1007/s10114-016-5184-1
关键词 Laplace transform ; occupation time ; time-homogeneous diffusion ; exit time ; Brownian motion with alternating drift ; skew Brownian motion
地址

1. College of Mathematics and Computer Science, Hu'nan Normal University, Changsha, 410081  

2. College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410114  

3. Department of Mathematics and Statistics, Concordia University, Canada, Montreal, H3G 1M8

语种 英文
文献类型 研究性论文
ISSN 1439-8516
学科 数学
基金 国家自然科学基金 ;  Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP), Education Ministry of China, Hu'nan Normal University ;  Natural Science Foundation of Hu'nan Province ;  Scientific Research Project of Hu'nan University of Arts and Science
文献收藏号 CSCD:5980130

参考文献 共 17 共1页

1.  Albercher H. Exit identities for Levy processes observed at Poisson arrival times. Bernoulli,2016,22:1364-1382 CSCD被引 1    
2.  Appuhamillage T. Occupation and local times for skew Brownian motion with applications to dispersion across an interface. Ann. Probab,2011,21:183-214 CSCD被引 3    
3.  Borodin A N. Handbook of Brownian Motion-Facts and Formulae, Second edition,2002 CSCD被引 1    
4.  Cai N. Ocuupation times of jump-diffusion processes with double exponential jumps and the pricing of options. Math. Oper. Res,2010,35:412-437 CSCD被引 4    
5.  Feller W. Diffusion processes in one dimension. Trans. Amer. Math. Soc,1954,77:1-31 CSCD被引 10    
6.  Gerber H. The Omega model: From bankruptcy to occupation times in the red. European Actuarial Journal,2012,2:259-272 CSCD被引 6    
7.  Ito K. Diffusion and Their Sample Paths,1974 CSCD被引 2    
8.  Landriault D. Occupation times of spectrally negative Levy processes with applications. Stoch. Proc. Appl,2011,121:2629-2641 CSCD被引 11    
9.  Lejay A. On the constructions of the skew Brownian motion. Probab. Surv,2006,3:413-466 CSCD被引 1    
10.  Li B. The joint Laplace transforms for diffusion occupation times. Adv. Appl. Probab,2013,45:1-19 CSCD被引 3    
11.  Li Y. On pre-exit joint occupation times for spectrally negative Levy processes. Statist. Probab. Lett,2014,94:48-55 CSCD被引 8    
12.  Li Y. Diffusion occupation time before exiting. Front. Math. China,2014,9:843-861 CSCD被引 5    
13.  Loeffen R L. Occupation times of intervals until first passage times for spectrally negative Levy processes. Stoch. Proc. Appl,2014,124:1408-1435 CSCD被引 10    
14.  Pitman J. Laplace transforms related to excursions of a one-dimensional diffusion. Bernoulli,1999,5:249-255 CSCD被引 3    
15.  Pitman J. Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches. Bernoulli,2003,9:1-24 CSCD被引 5    
16.  Prokhorov Y V. Probability Theory III. Stochastic Calculus,1998 CSCD被引 1    
17.  Yin C. Exact joint laws associated with spectrally negative Levy processes and applications to insurance risk theory. Front. Math. China,2014,9:1453-1471 CSCD被引 3    
引证文献 2

1 Li Yingqiu Exit identities for diffusion processes observed at Poisson arrival times Frontiers of Mathematics in China,2020,15(3):507-528
CSCD被引 0 次

2 Li Yingqiu The joint Laplace transforms for killed diffusion occupation times Applied Mathematics. Series B, A Journal of Chinese Universities,2024,39(3):398-415
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号