硝酸盐还原和亚铁氧化对贪铜菌还原砷的影响
Effects of Nitrate Reduction and Ferrous Oxidation on Microbial Arsenate Reduction by Cupriavidusmetallidurans Paddy-2
查看参考文献33篇
文摘
|
华南红壤区水稻土具有含铁量较高、氮元素输入量较大的特性,且部分矿区周边的水稻田受砷污染严重,不仅影响水稻产量,还对食品安全和人类健康造成威胁。利用多轮传代富集的方法,从华南红壤水稻土中纯化获得一株具有硝酸盐还原、亚铁氧化和砷还原功能的贪铜菌Cupriavidus metallidurans Paddy-2。以该细菌为研究对象,探讨纯细菌体系中,硝酸盐还原和亚铁氧化过程对微生物还原As(Ⅴ)的影响,测试了反应体系中As(Ⅴ)和硝酸盐的还原动力学,以及Fe(Ⅱ)的氧化动力学,并对体系中Fe(Ⅱ)氧化所生成的矿物沉淀进行表征分析。As(Ⅴ)还原动力学结果表明,中性厌氧条件下贪铜菌对As(Ⅴ)的还原率为100%,而分别加入硝酸盐和Fe(Ⅱ)均能有效抑制贪铜菌对As(Ⅴ)的还原作用(还原率为27%~49%),两者同时存在对As(Ⅴ)还原的抑制作用最大(还原率只有21%)。硝酸盐作为末端电子受体,由于其氧化还原电位比As(Ⅴ)更高,因此比As(Ⅴ)更容易接收电子,从而减缓贪铜菌对As(Ⅴ)的还原效率。Fe(Ⅱ)氧化动力学和矿物表征结果表明,只有在硝酸盐和Fe(Ⅱ)共存的体系里,Fe(Ⅱ)的氧化才能得到有效的促进,并生成含Fe(Ⅲ)的无定形矿物。这些Fe(Ⅲ)矿物覆盖在菌株表面,有可能降低菌株的代谢活性,并有效吸附As(Ⅴ),从而减低体系中As的浓度,达到降低As毒性的效果。研究结果可为受砷污染农田的生物修复技术的开发提供科学依据。 |
其他语种文摘
|
The red paddy soils in South China are with high content of iron and high input of nitrogen. The arsenic contamination in the paddy soils around mining area not only reduces the rice production but also has raised the food safety and human health issue. In this study, Cupriavidus metallidurans Paddy-2 was isolated from the red paddy soil in South China using subculturing technique, which has been identified with the ability of nitrate reduction, ferrous oxidation and arsenate reduction. The objective of this study was to investigate the effects of nitrate reduction and ferrous oxidation on arsenate reduction by C. metallidurans Paddy-2, in which kinetics of As (Ⅴ) reduction, nitrate reduction, and Fe (Ⅱ) oxidation was monitored, and the precipitates after Fe (Ⅱ) oxidation were characterized as well. The results of As (Ⅴ) reduction kinetics revealed that C. metallidurans Paddy-2 could completely reduce the As (Ⅴ) addedat neutral pH under anoxic conditions, whilethe presence of nitrate or Fe (Ⅱ) could inhibit the microbialAs (Ⅴ) reduction with 27%~49% of As(Ⅴ) reduced.The presence of both nitrate and Fe (Ⅱ) showed the highest inhibition effect on microbial As (Ⅴ) reduction with only 21% of As (Ⅴ) reduced. Due to the higher redox potential of nitrate than As (Ⅴ), nitrate could serve as a more competitiveelectron acceptorthan As (Ⅴ), and consequently slowed down the microbial As (Ⅴ) reduction rate.The results of Fe (Ⅱ) oxidationkinetics and mineral characterization revealed that only the presence of both Fe (Ⅱ) and nitrate could facilitate the Fe (Ⅱ) oxidation process, resulting in formation of amorphous Fe (Ⅲ) minerals. These minerals were mainly formed on the surface of bacterial cells, probably inhibiting the activity of bacteria, and could effectively adsorbAs (Ⅴ), leading to lower concentration of active arsenic and reduction of arsenic toxicity. The results obtained in this study could provide useful information for the exploration of bio-remediation technology in arsenic-contaminated soils. |
来源
|
生态环境学报
,2017,26(2):328-334 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2017.02.020
|
关键词
|
砷还原
;
亚铁氧化
;
硝酸盐还原
;
贪铜菌
;
水稻土
|
地址
|
1.
中国科学院广州地球化学研究所, 广东, 广州, 510640
2.
广东省生态环境与土壤研究所, 广东, 广州, 510650
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金-广东联合基金
;
广东省科技计划项目
;
广东省省院创新平台建设专项
|
文献收藏号
|
CSCD:5978269
|
参考文献 共
33
共2页
|
1.
Bissen M. Speciation of As(Ⅲ), As(Ⅴ), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS.
Analytical and Bioanalytical Chemistry,2000,367(1):51-55
|
CSCD被引
1
次
|
|
|
|
2.
Carlson H K. Fe(Ⅱ) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions.
Journal of Bacteriology,2013,195(14):3260-3268
|
CSCD被引
16
次
|
|
|
|
3.
Chakraborty A. Neutrophilic, nitrate-dependent, Fe(II)oxidation by a Dechloromonas species.
World Journal of Microbiology and Biotechnology,2013,29(4):617-623
|
CSCD被引
19
次
|
|
|
|
4.
Chen M J. Iron reduction coupled to reductive dechlorination in red soil:A review.
Soil Science,2014,179(10/11):457-467
|
CSCD被引
6
次
|
|
|
|
5.
Committeea M. Standardised general method for the determination of iron with 1, 10-phenanthroline.
Analyst,1978,103:391-396
|
CSCD被引
2
次
|
|
|
|
6.
Cui J H. Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials.
Journal of Materials Chemistry,2012,22(16):8121-8126
|
CSCD被引
4
次
|
|
|
|
7.
Emmerich M. Abundance, distribution, and activity of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia.
Applied & Environmental Microbiology,2012,78(12):4386-4399
|
CSCD被引
3
次
|
|
|
|
8.
Holm T R. A comparison of oxidation-reduction potentials calculated from the As(Ⅴ)/As(Ⅲ) and Fe(Ⅲ)/Fe(Ⅱ) couples with measured platinum-electrode potentials in groundwater.
Journal of Contaminant Hydrology,1989,5(1):67-81
|
CSCD被引
1
次
|
|
|
|
9.
Song J. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(Ⅱ) in the presence of arsenate.
Journal of Hazardous Materials,2015,294:70-79
|
CSCD被引
9
次
|
|
|
|
10.
Kappler A. Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1.
Geobiology,2005,3(4):235-245
|
CSCD被引
25
次
|
|
|
|
11.
Klueglein N. Potential role of nitrite for abiotic Fe(Ⅱ) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria.
Applied & Environmental Microbiology,2014,80(3):1051-1061
|
CSCD被引
17
次
|
|
|
|
12.
Larese-Casanova P. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(Ⅱ)-oxidizing bacteria:Effect of pH, bicarbonate, phosphate, and humic acids.
Geochimica Et Cosmochimica Acta,2010,74(13):3721-3734
|
CSCD被引
16
次
|
|
|
|
13.
Li X M. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(Ⅱ) oxidation at circumneutral pH in paddy soil.
Soil Biology and Biochemistry,2016,94:70-79
|
CSCD被引
21
次
|
|
|
|
14.
Liu C P. Arsenic availability in rice from a mining area:Is amorphous iron oxide-bound arsenic a source or sink?.
Environmental Pollution,2015,199:95-101
|
CSCD被引
24
次
|
|
|
|
15.
Macur R E. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.
Environmental Science & Technology,2004,38(1):104-111
|
CSCD被引
9
次
|
|
|
|
16.
Maity J P. The potential for reductive mobilization of arsenic [As(Ⅴ) to As(Ⅲ)] by OSBH(2) (Pseudomonas stutzeri) and OSBH(5) (Bacillus cereus) in an oil-contaminated site.
Journal of Environmental Science & Health Part A Toxic/Hazardous Substances & Environmental Engineering,2011,46(41):1239-1246
|
CSCD被引
1
次
|
|
|
|
17.
Meliker J R. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan:a standardized mortality ratio analysis.
Environmental Health,2007,6(1):299-309
|
CSCD被引
12
次
|
|
|
|
18.
Melton E D. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle.
Nature Reviews Microbiology,2014,12(12):797-808
|
CSCD被引
84
次
|
|
|
|
19.
Muehe E M. Ecophysiology andthe energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains ofnitrate-reducing bacteria.
FEMS Microbiology Ecology,2009,70(3):335-343
|
CSCD被引
23
次
|
|
|
|
20.
Oremland R S. Arsenic, microbes and contaminated aquifers.
Trends in Microbiology,2005,13(2):45-49
|
CSCD被引
32
次
|
|
|
|
|