胶孢炭疽菌CgSho1基因的克隆与功能分析
Gene cloning and functional analysis of CgSho1 in Colletotrichum gloeosporioides
查看参考文献26篇
文摘
|
HOG-MAPK(high osmolarity glycerol mitogen-activated protein kinase)信号途径是真菌MAPK途径中参与渗透压响应的一条重要通路,在植物病原菌生长发育及致病过程中发挥着重要的作用。Sho1 (synthetic high osmolarity-sensitive protein 1)是HOG-MAPK信号途径上游的一个重要感受器,在不同真菌中常具有不同的功能。本研究从胶孢炭疽菌中克隆了Sho1的同源基因,命名为CgSho1,该基因编码一个291个氨基酸的蛋白,含有4个跨膜结构域和一个SH3功能域。利用同源重组的方法获得了该基因的敲除突变体,与野生型相比,敲除突变体表现为营养生长缓慢,菌丝稀疏且疏水性增强,产孢量下降,对氧化压力和渗透压更加敏感,致病力明显减弱。上述结果表明,CgSho1参与调控胶胞炭疽菌的营养生长、分生孢子产量、氧化应激反应、渗透压响应及致病性。 |
其他语种文摘
|
HOG-MAPK (high osmolarity glycerol mitogen-activated protein kinase) signal pathway involved in osmotic pressure response of MAPK pathway plays important role in growth development and pathogenicity of plant pathogens. Sho1 (synthetic high osmolarity-sensitive protein 1),an important receptor in the upstream of HOG-MAPK signal pathway often has different functions in different fungi. In this study,the homologous gene of Sho1 in Colletotrichum gloeosporioides was cloned and named as CgSho1,which encodes a 291-amino acids protein,containing 4 transmembrane domains and a SH3 domain. The gene-knockout mutants of CgSho1 were obtained by homologous recombination. Comparing to wild type,the knockout mutants of CgSho1 showed slow growth,sparse aerial hyphae with increased hydrophobicity,decreased conidium production,more sensitive to oxidative stress and osmotic pressure,significantly decreased pathogenicity. These results demonstrated that Cg- Sho1 is involved in regulation of vegetative growth,conidium production,oxidative stress response,osmotic pressure response and pathogenicity of C. gloeosporioides. |
来源
|
植物病理学报
,2017,47(1):40-49 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000002
|
关键词
|
胶胞炭疽菌
;
MAPK途径
;
Sho1
;
渗透压响应
;
致病性
|
地址
|
海南大学环境与植物保护学院, 海口, 570228
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家自然科学基金
;
海南省自然科学基金
|
文献收藏号
|
CSCD:5976313
|
参考文献 共
26
共2页
|
1.
Dean R. The top10 fungal pathogens in molecular plant pathology.
Molecular Plant Pathology,2012,13(4):414-430
|
CSCD被引
179
次
|
|
|
|
2.
Han C Z. Study on progress in Colletotrichum gloeosporioides(in Chinese).
广东农业科学,2012(S1):386-389
|
CSCD被引
1
次
|
|
|
|
3.
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts.
Microbiology and Molecular Biology Reviews,2002,66(2):300-372
|
CSCD被引
32
次
|
|
|
|
4.
Singh K K. The Saccharomyces cerevisiae Slnlp-SsklP two-component system mediates response to oxidative stress and in an oxidant specific fashion.
Free Radical Biology and Medicine,2000,29(10):1043-1050
|
CSCD被引
7
次
|
|
|
|
5.
Wang G H.
Function analysis of pathogenicity -related signalling mucin MoMsb2 and transcriptional regulator MoEor1 in Magnoporth oryzae(in Chinese),2015
|
CSCD被引
1
次
|
|
|
|
6.
Roman E. The Shol adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
Molecular and Cellular Biology,2005,25(23):10611-10627
|
CSCD被引
5
次
|
|
|
|
7.
Qi Y. Study of DNA extraction methods in Fusarium oxysporum f.sp.cubense(in Chinese).
生物技术,2004,14(6):32-34
|
CSCD被引
1
次
|
|
|
|
8.
Liu Z. Polyethylene glycol(PEG) -mediated transformation in filamentous fungal pathogens.
Methods in Molecular Biology,2012,835:365-375
|
CSCD被引
7
次
|
|
|
|
9.
Zhang H F. Eight RGS and RGS-like proteins orchestrate growth,differentiation,and pathogenicity of Magnaporthe oryzae.
PLoS Pathogens,2011,7:e1002450
|
CSCD被引
13
次
|
|
|
|
10.
Hamel L P. Mitogenactivated protein kinase signaling in plant-interacting fungi:distinct messages from conserved messengers.
Plant Cell,2012,24(4):1327-1351
|
CSCD被引
38
次
|
|
|
|
11.
Gustin M C. MAP kinase pathways in the yeast Saccharomyces cerevisiae.
Microbiology & Molecular Biology Reviews,1998,62(4):1264-1300
|
CSCD被引
45
次
|
|
|
|
12.
Garrido E. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1,a novel MAPK protein.
Genes & Development,2004,18(24):3117-3130
|
CSCD被引
5
次
|
|
|
|
13.
Xu J R. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
Genes & Development,1996,10(21):2696-2706
|
CSCD被引
34
次
|
|
|
|
14.
Bruno K S. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea.
Eukaryotic Cell,2004,3(6):1525-1532
|
CSCD被引
15
次
|
|
|
|
15.
Thines E. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea.
Plant Cell,2000,12(9):1703-1718
|
CSCD被引
18
次
|
|
|
|
16.
Kim Y K. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides.
Plant Cell,2000,12:1331-1343
|
CSCD被引
12
次
|
|
|
|
17.
Yong H Y. Cgl-SLT2 is required for appressorium formation,sporulation and pathogenicity in Colletotrichum gloeosporioides.
Brazilian Journal of Microbiology,2013,44(4):1241-1250
|
CSCD被引
7
次
|
|
|
|
18.
Lanver D. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis.
Plant Cell,2010,22(6):2085-2101
|
CSCD被引
5
次
|
|
|
|
19.
Ma D M. The effect of extra copies of sho1 or pbs2 gene on the adaptive ability of Aspergillus fumigatus to several stresses(in Chinese).
中国真菌学杂志,2012,704:193-198
|
CSCD被引
1
次
|
|
|
|
20.
Miyara I. pH regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity.
Molecular Plant -Microbe Interactions,2010,23(3):304-316
|
CSCD被引
7
次
|
|
|
|
|