A1基纳米复合含能材料的自组装
Self-assembly of Aluminum-based Nanostructured Energetic Materials
查看参考文献41篇
文摘
|
从A1基纳米复合含能材料的能量方面着手分析比较了各种制备方法的优劣,凸显出了自组装法制备A1基纳米复合含能材料的优势。自组装制备方法能够有效控制A1基纳米复合含能材料中粒子的排布,增加粒子各自的分散性和组分粒子之间的接触,缩短了粒子之间的传质和传热距离,提高了 A1基纳米复合含能材料的燃烧速率、反应活性和能量利用率。将目前报道的A1基纳米复合含能材料的自组装制备方法分为两类(直接组装法和间接组装法)进行论述总结,最后提出了自组装法在含能材料制备中的发展方向。附参考文献41篇。 |
其他语种文摘
|
The advantages of self-assembly method are highlighted by analyzing and comparing the energy properties of the nanostructured energetic materials fabricated by different approaches. The self-assembly strategy can effectively control the arrangement of component nanoparticles,improve the dispersity of ingredients, and increase the intimacy between the reactants. Therefore, the burning rate and reactivity,as well as energy efficiency, of the assembled nanostructured energetic materials are enhanced, due to that the length of mass and heat transport during reaction are reduced. Recent advances reported in previous publications related to the self-assembly of aluminum-based nanostructured energetic materials are summarized and classified into two categories: direct and indirect methods. Accordingly, the development direction of the self-assembly to prepare nanostructured energetic materials is proposed,with 41 references. |
来源
|
火炸药学报
,2017,40(2):1-9 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.2017.02.001
|
关键词
|
材料科学
;
纳米材料
;
含能材料
;
自组装
;
纳米A1粉
;
金属燃烧剂
|
地址
|
北京理工大学材料学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
一般工业技术;武器工业 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:5975055
|
参考文献 共
41
共3页
|
1.
Rossi C. Nanoenergetic materials for MEMS: a review.
J Microelectromech S,2007,16(4):919-931
|
CSCD被引
36
次
|
|
|
|
2.
王昕. 纳米含能材料研究进展.
火炸药学报,2006,29(2):29-32
|
CSCD被引
23
次
|
|
|
|
3.
王军. 纳米铝热剂的研究进展.
火炸药学报,2014,37(4):1-8
|
CSCD被引
14
次
|
|
|
|
4.
Rossi C.
Al-Based Energetic Nanomaterials: Design, Manufacturing, Properties and Applications,2015
|
CSCD被引
1
次
|
|
|
|
5.
Braeuer J. A novel technique for MEMS packaging: reactive bonding with integrated material systems.
Sensors & Actuators A Physical,2012,188(12):212-219
|
CSCD被引
3
次
|
|
|
|
6.
Morris C J. Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering.
Journal of Physics & Chemistry of Solids,2010,71(2):84-89
|
CSCD被引
19
次
|
|
|
|
7.
Staley C S. Fast-impulse nanothermite solid-propellant miniaturized thrusters.
Journal of Propulsion and Power,2013,29(6):1400-1409
|
CSCD被引
6
次
|
|
|
|
8.
Korampally M. Transient pressure mediated intranuclear delivery of FITC-dextran into chicken cardiomyocytes by MEMS-based nanothermite reaction.
Sensors and Actuators B: Chemical,2012,171/172:1292-1296
|
CSCD被引
4
次
|
|
|
|
9.
Ramos A S. Production of intermetallic compounds from Ti/ Al and Ni/ Al multilayer thin films a comparative study.
Journal of Alloys and Compounds,2009,484(1/2):335-340
|
CSCD被引
4
次
|
|
|
|
10.
Sullivan K T. Synthesis and reactivity of Nano-Ag_2O as an oxidizer for energetic systems yielding antimicrobial products.
Combustion and Flame,2013,160(2):438-446
|
CSCD被引
1
次
|
|
|
|
11.
Monk I. Combustion characteristics of stoichiometric Al-CuO nanocomposite thermites prepared by different methods.
Combustion Science and Technology,2016,188:555-574
|
CSCD被引
3
次
|
|
|
|
12.
Zhou X. Nanostructured energetic composites: synthesis,ignition/combustion modeling, and applications.
ACS Applied Materials & Interfaces,2014,6(5):3058-3074
|
CSCD被引
20
次
|
|
|
|
13.
高坤. 制备方法对Al/Fe_2O_3纳米铝热剂性能的影响.
火炸药学报,2012,35(3):11-14
|
CSCD被引
7
次
|
|
|
|
14.
周超. 球磨时间对Fe_2O_3/Al纳米复合材料性能的影响.
固体火箭技术,2010,33(4):445-448
|
CSCD被引
10
次
|
|
|
|
15.
Tillotson T M. Nanostructured energetic materials using sol-gel methodologies.
Journal of Non-crystalline Solids,2001,285(1/3):338-345
|
CSCD被引
54
次
|
|
|
|
16.
Gash A E. Nanostructured energetic materials with sol-gel methods.
Materials Research Society Fall 2003 Meeting,2003
|
CSCD被引
2
次
|
|
|
|
17.
Shin M S. Reaction characteristics of Al/Fe2 03 nanocomposites.
Journal of Industrial and Engineering Chemistry,2012,18(5):1768-1773
|
CSCD被引
3
次
|
|
|
|
18.
Zhang T. Tuning the reactivity of Al/Fe_2O_3 nanoenergetic materials via an approach combining soft template self-assembly with sol-gel process process.
Journal of Solid State Chemistry,2015,230(1):1-7
|
CSCD被引
6
次
|
|
|
|
19.
Zhang T. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2 03 /multi-walled carbon nanotube (MWCNT).
Journal of Solid State Chemistry,2016,237:394-403
|
CSCD被引
4
次
|
|
|
|
20.
Sui H. Thermo-chemical and energetic properties of layered nano-thermite composites.
Thermochimica Acta,2016,642:17-24
|
CSCD被引
2
次
|
|
|
|
|