含LPSO相Mg_(94)Y_4Zn_1Ni_1合金的组织和力学性能
Microstructure and Mechanical Properties of Mg_(94)Y_4Zn_1Ni_1 Alloy with Long Period Stacking Ordered (LPSO) Phase
查看参考文献19篇
文摘
|
采用OM、SEM、TEM和电子万能试验机研究了Mg_(94)Y_4Zn_1Ni_1(at%)合金在铸态、退火、挤压和时效态的显微组织与力学性能。结果表明:铸态合金组织由胞状α-Mg相、网状18R LPSO相和块状Mg_(24)(Y, Zn, Ni)_5相组成。退火后,合金中未析出14H LPSO相。经挤压变形,18R LPSO相转变为长条状并沿挤压方向排列,挤压态合金的抗拉强度达到417 MPa,显著高于铸态和退火态合金。经过T5和T6时效处理,在合金的基体中析出大量细小的共格β'沉淀相,合金得到进一步强化。T5态和T6态合金的抗拉强度分别为434和432 MPa,屈服强度均高于300 MPa。 |
其他语种文摘
|
The microstructure and mechanical properties of Mg_(94)Y_4Zn_1Ni_1 alloy in as-cast, as-annealed, as-extruded and aged states were investigated by OM, SEM, TEM and electronic universal testing machine. Results show that the as-cast alloy is composed of α-Mg matrix, 18R long period stacking ordered (LPSO) structure and Mg_(24)(Y, Zn, Ni)_5 phase. During hot extrusion, the 18R phases become stripy and are aligned in lines along the extrusion direction. The ultimate tensile strength of as-extruded alloy reaches 417 MPa. After aging, a large number of coherent β' phases are precipitated in α-Mg matrix, and as a result the strength of the alloy is enhanced further. The T5-treated and T6-treated alloys exhibit ultimate tensile strength of 434 and 432 MPa, respectively. |
来源
|
稀有金属材料与工程
,2017,46(4):1097-1102 【核心库】
|
关键词
|
Mg_(94)Y_4Zn_1Ni_1
;
热挤压
;
时效
;
长周期相
;
力学性能
|
地址
|
1.
河海大学, 江苏, 南京, 211100
2.
东南大学, 江苏, 南京, 211189
3.
南通大学, 江苏, 南通, 226019
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-185X |
学科
|
金属学与金属工艺 |
基金
|
江苏省自然科学基金
|
文献收藏号
|
CSCD:5973305
|
参考文献 共
19
共1页
|
1.
Wang J F.
Journal of Materials Science,2012,47(4):2005
|
CSCD被引
13
次
|
|
|
|
2.
Liu H.
Rare Metal Materials and Engineering,2014,43(3):570
|
CSCD被引
8
次
|
|
|
|
3.
Zhang J S.
Materials Science and Engineering A,2013,559:416
|
CSCD被引
8
次
|
|
|
|
4.
Luo Z P.
Journal of Materials Science Letters,2000,19(9):813
|
CSCD被引
53
次
|
|
|
|
5.
Kawamura Y.
Materials Transactions,2007,48(11):2986
|
CSCD被引
89
次
|
|
|
|
6.
Zhu Y M.
Acta Materialia,2010,58(8):2936
|
CSCD被引
134
次
|
|
|
|
7.
Matsuda M.
Materials Science and Engineering A,2005,393(1/2):269
|
CSCD被引
77
次
|
|
|
|
8.
Mi S B.
Scripta Materialia,2013,68(8):635
|
CSCD被引
32
次
|
|
|
|
9.
Kawamura Y.
Scripta Materialia,2006,55(5):453
|
CSCD被引
75
次
|
|
|
|
10.
Kishida K.
Intermetallics,2012,31:55
|
CSCD被引
26
次
|
|
|
|
11.
Shao X H.
Journal of Alloys and Compounds,2011,509(26):7221
|
CSCD被引
8
次
|
|
|
|
12.
Kawamura Y.
Materials Transactions,2001,42(7):1172
|
CSCD被引
211
次
|
|
|
|
13.
Xu C.
Journal of Alloys and Compounds,2012,528:40
|
CSCD被引
14
次
|
|
|
|
14.
Chen B.
Journal of Alloys and Compounds,2007,440(1/2):94
|
CSCD被引
17
次
|
|
|
|
15.
Yin D D.
Journal of Alloys and Compounds,2011,509(5):1696
|
CSCD被引
29
次
|
|
|
|
16.
Liu H.
Materials Science and Engineering A,2013,585:387
|
CSCD被引
17
次
|
|
|
|
17.
Abe E.
Acta Materialia,2002,50(15):3845
|
CSCD被引
108
次
|
|
|
|
18.
Jin Q Q.
Journal of Alloys and Compounds,2013,568:21
|
CSCD被引
13
次
|
|
|
|
19.
Tong L B.
Materials Science and Engineering A,2013,563:177
|
CSCD被引
30
次
|
|
|
|
|