激光点云与光学影像配准:现状与趋势
Registration between Laser Scanning Point Cloud and Optical Images: Status and Trends
查看参考文献80篇
文摘
|
激光点云与光学影像是2种重要的遥感数据源,二者的融合能够实现优势互补,具有应用价值。点云与影像的配准是实现二者集成应用的基础,虽然经历了多年的发展仍存在许多问题有待解决。本文首先通过建立点云与影像配准问题的数学范式,将整个配准问题划分为观测值提取、配准模型选择和参数优化3部分,深入分析各部分所面临的难点与挑战;然后对现有的点云与影像配准方法进行回顾与总结,对比分析各类方法的优缺点及适用范围;最后展望了今后的发展方向进行了展望,为后续的研究提供参考。 |
其他语种文摘
|
LiDAR point cloud and optical imagery are different types of remote sensing data source. They have some unique merits, respectively, that are complementary to each other. Integrating these two dataset has significant value in many applications. However, as the existence of various error sources, point cloud and optical imagery are usually misaligned. For the purpose of further integrated processing, the registeration of point cloud and imagery is a preliminary step which will align them into a unified geo-reference frame. Although after decades of research, this registration problem is far from solved. This paper gave a detailed survey of registration between point cloud and optical images. To obtain thorough understanding of this problem, a general mathematical paradigm for the registration was established firstly. By analyzing the mathematical paradigm, we indicated three main difficulties in this registration problem, and then definitely divided the whole workflow of registration into three key parts which are named: (1) the acquisition of corresponding observations, (2) the selection of transformation models; (3) the optimization of unknowns. Afterwards, we reviewed a series of representative registration methods from the above three aspects. In the acquisition of corresponding observations, the existing methods were classified into area-based method, feature-based method and multiple-view geometry based method. In the stage of transformation models selection, frequently-used models were classified into sensor-based models and empirical models. In the unknowns' optimization part, two principal optimization methods termed local optimization and global optimization were introduced and the general usages of these optimization in registration were described. Furthermore, we summarized the mentioned registration methods and gave a detailed comparison and analysis including the advantages / shortcomings and the applicable scope. At last, the trends of registration development were forecasted. |
来源
|
地球信息科学学报
,2017,19(4):528-539 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.00528
|
关键词
|
光学影像
;
激光探测与测距
;
点云
;
配准
;
综述
|
地址
|
武汉大学, 测绘遥感信息工程国家重点实验室, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金青年科学基金项目
;
国家教育部高等学校博士学科点专项科研基金
;
地理空间信息工程国家测绘地理信息局重点实验室开放研究基金项目
|
文献收藏号
|
CSCD:5962004
|
参考文献 共
80
共4页
|
1.
张帆. 激光扫描与光学影像数据配准的研究进展.
测绘通报,2008(2):7-10
|
CSCD被引
21
次
|
|
|
|
2.
Mishra R K. A review of optical imagery and airborne LiDAR data registration methods.
The Open Remote Sensing Journal,2012,6(5):54-63
|
CSCD被引
7
次
|
|
|
|
3.
Stamos I. Automated registration of 3D-range with 2D-color images: an overview.
Information Sciences and Systems (CISS), 2010 44th Annual Conference on,2010:1-6
|
CSCD被引
1
次
|
|
|
|
4.
Sindhu Madhuri G. Classification of image registration techniques and algorithms in digital image processing: A research survey.
International Journal of Computer Trends and Technology (IJCTT),2014,15(2):78-82
|
CSCD被引
1
次
|
|
|
|
5.
Gendrin C. Validation for 2D/3D registration II: The comparison of intensity-and gradient-based merit functions using a new gold standard data set.
Medical physics,2011,38(3):1491-1502
|
CSCD被引
5
次
|
|
|
|
6.
Umeda K. Registration of range and color images using gradient constraints and range intensity images.
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on,2004,13(3):12-15
|
CSCD被引
1
次
|
|
|
|
7.
Duraisamy P. Automated two-dimensional-threedimensional registration using intensity gradients for three-dimensional reconstruction.
Journal of Applied Remote Sensing,2012,6(1):063517(1-13)
|
CSCD被引
1
次
|
|
|
|
8.
叶沅鑫. 利用局部自相似进行多光谱遥感图像自动配准.
测绘学报,2014,43(3):268-275
|
CSCD被引
16
次
|
|
|
|
9.
Kuglin C D. The phase correlation image alignment method.
Proc. IEEE 1975 Inf. Conf. Cybernet. Society,1975:163-165
|
CSCD被引
1
次
|
|
|
|
10.
Reddy B S. An FFT-based technique for translation, rotation, and scale-invariant image registration.
Image Processing, IEEE Transactions on,1996,5(8):1266-1271
|
CSCD被引
202
次
|
|
|
|
11.
Shorter N. Autonomous registration of LiDAR data to single aerial image.
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008.5,2008:216-219
|
CSCD被引
1
次
|
|
|
|
12.
Wong A. Efficient FFT-Accelerated approach to invariant optical-LIDAR registration.
Geoscience and Remote Sensing, IEEE Transactions on,2008,46(11):3917-3925
|
CSCD被引
11
次
|
|
|
|
13.
Foroosh H. Extension of phase correlation to subpixel registration.
Image Processing, IEEE Transactions on,2002,11(3):188-200
|
CSCD被引
81
次
|
|
|
|
14.
Yan H. Robust phase correlation based feature matching for image co-registration and DEM generation.
Remote Sensing and Spatial Information Sciences,2008,37:1751-1756
|
CSCD被引
1
次
|
|
|
|
15.
Pluim J P. Mutual-information-based registration of medical images: A survey.
Medical Imaging, IEEE Transactions on,2003,22(8):986-1004
|
CSCD被引
163
次
|
|
|
|
16.
Chen H M. Performance of mutual information similarity measure for registration of multitemporal remote sensing images.
Geoscience and Remote Sensing, IEEE Transactions on,2003,41(11):2445-2454
|
CSCD被引
27
次
|
|
|
|
17.
Cole-Rhodes A. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient.
Image Processing, IEEE Transactions on,2003,12(12):1495-1511
|
CSCD被引
34
次
|
|
|
|
18.
Suri S. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas.
Geoscience and Remote Sensing, IEEE Transactions on,2010,48(2):939-949
|
CSCD被引
45
次
|
|
|
|
19.
邓非. 基于互信息的LIDAR与光学影像配准方法.
测绘科学,2009,34(6):51-52
|
CSCD被引
8
次
|
|
|
|
20.
王蕾. 基于梯度互信息的光学影像和LIDAR强度图配准.
地理空间信息,2010,8(3):56-58
|
CSCD被引
7
次
|
|
|
|
|