填加造孔剂法制备泡沫铝及其吸能性能
Fabrication of Aluminum Foam by Space-holder Method and the Energy Absorption Properties
查看参考文献16篇
文摘
|
以尿素为造孔剂,采用填加造孔剂法制备泡沫铝,系统研究了成型烧结温度、孔隙率和孔径大小对泡沫铝吸能性能的影响,在此过程中采用电子万能试验机和数字图像相关(DIC)技术同步测试分析。结果表明:填加造孔剂法可以良好的控制泡沫铝的孔隙率和孔径;泡沫铝的最佳成型烧结温度为650 ℃,在此温度下,泡沫铝的压缩屈服强度达到10.7 MPa;随着孔隙率的降低,泡沫铝的屈服强度和平台应力逐渐提高,材料吸能性能有显著增强;当孔径小于2.0 mm时,随着孔径的增大,材料的吸能性能小幅提高。DIC技术可以直观的表征泡沫材料力学行为,具有良好的工程应用前景。 |
其他语种文摘
|
Aluminum foam was fabricated by space-holder method with carbamide particles as space-holder material. The effects of forming temperature,porosity and diameter of pores were investigated systematically. During this process,the electronic universal testing machine combined with digital image correlation (DIC) technique was used to test the properties. The results show that the porosity and diameter of pores can be well controlled by space-holder method. The best sintering temperature of forming Al foam is 650 ℃. Under this sintering temperature,the compressive yield strength reaches 10.7 MPa. With the decrease of pore porosity,both of the compressive yield strength and platform stress increase,so the energy absorption of foam is improved remarkably. When the diameter of pores is below 2.0 mm,the energy absorption of foam is improved slightly with the increase of Al foam diameter. DIC technology can be used directly to characterize the mechanical behavior of foam material,which has a good engineering application prospect. |
来源
|
航空材料学报
,2017,37(2):55-62 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2016.000117
|
关键词
|
泡沫铝
;
粉末冶金
;
吸能
;
DIC技术
|
地址
|
中国民航大学中欧航空工程师学院, 天津, 300300
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
力学;金属学与金属工艺 |
基金
|
国家自然科学基金
;
中国民航大学科研启动基金
|
文献收藏号
|
CSCD:5961299
|
参考文献 共
16
共1页
|
1.
Mu Y. Deformation mechanisms of closed-cell aluminum foam in compression.
Scripta Materialia,2010,63(6):629-632
|
CSCD被引
2
次
|
|
|
|
2.
Shen J. Compressive behaviour of closedcell aluminium foams at high strain rates.
Composites Part B,2010,41(8):678-685
|
CSCD被引
5
次
|
|
|
|
3.
Alizadeh M. Compressive properties and energy absorption behavior of Al-Al_2O_3 composite foam synthesized by space-holder technique.
Materials and Design,2012,35:419-424
|
CSCD被引
5
次
|
|
|
|
4.
侯伟.
熔体发泡法制备泡沫铝及其工艺研究,2012
|
CSCD被引
1
次
|
|
|
|
5.
Khabushan J. A study of fabricating and compressive properties of cellular Al-Si (355.0) foam using TiH_2.
Materials and Design,2014,55(6):792-797
|
CSCD被引
1
次
|
|
|
|
6.
Castro G. Compression and lowvelocity impact behavior of aluminum syntactic foam.
Materials Science and Engineering: A,2013,578(31):222-229
|
CSCD被引
3
次
|
|
|
|
7.
Michailidis N. Deformation and energy absorption properties of powder-metallurgy produced Al foams.
Materials Science and Engineering: A,2011,528(24):7222-7227
|
CSCD被引
3
次
|
|
|
|
8.
潘兵. 1200℃高温热环境下全场变形的非接触光学测量方法研究.
强度与环境,2011,38(1):52-59
|
CSCD被引
13
次
|
|
|
|
9.
Wang J. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels.
Composite Structures,2012,96(4):298-311
|
CSCD被引
2
次
|
|
|
|
10.
Son A. Local deformation analysis of a sand specimen using 3D digital image correlation for the calibration of a simple elastoplastic model.
Geo Congress 2012-State of the Art and Practice in Geotechnical Engineering. (225),2012:2292-2301
|
CSCD被引
1
次
|
|
|
|
11.
Caduff D. Analysis of compressive fracture of three different concretes by means of 3D-digital image correlation and vacuum impregnation.
Cement and Concrete Composites,2010,32(4):281-290
|
CSCD被引
6
次
|
|
|
|
12.
Schuler P. Deformation and failure behaviour of open cell Al foams under quasi-static and impact loading.
Materials Science and Engineering: A,2013,587(12):250-261
|
CSCD被引
4
次
|
|
|
|
13.
Wang J. A novel approach to obtain in-situ growth carbon nanotube reinforced aluminum foams with enhanced properties.
Materials Letters,2015,161:763-766
|
CSCD被引
5
次
|
|
|
|
14.
Jiang B. Processing of open cell aluminum foams with tailored porous morphology.
Scripta Materialia,2005,53(6):781-785
|
CSCD被引
8
次
|
|
|
|
15.
Jiang B. A novel method for making open cell aluminum foams by powder sintering process.
Materials Letters,2005,59(26):3333-3336
|
CSCD被引
8
次
|
|
|
|
16.
Mondal D P. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam.
Materials Science and Engineering: A,2009,507(1/2):102-109
|
CSCD被引
13
次
|
|
|
|
|