气相爆轰波传播过程中的自点火效应
Auto-ignition effect in gaseous detonation propagation
查看参考文献19篇
文摘
|
基于基元反应模型和单步反应模型,对直管道中H_2-air混合气体中爆轰波的传播过程进行了数值模拟,揭示了气相爆轰波传播过程中的自点火效应。利用数值模拟方法计算了不同爆轰模型的点火延迟时间,并得到了爆轰波三波点的传播过程以及所形成胞格结构的尺寸。结果表明,胞格宽度与点火延迟时间成正比;爆轰波诱导区内气体的点火延迟时间与三波点的运动周期基本一致。进一步对结果分析可知,爆轰波的自维持传播取决于点火延迟时间(表征化学反应的特征时间)和三波点的运动周期(表征流动的特征时间)的匹配;当二者相匹配时,经过前导激波压缩后形成的高温高压爆轰气体,在短时间内实现了自点火,同时释放出大量的能量推动了爆轰波的前进,即爆轰波的稳定自维持传播依靠其自点火机制。 |
其他语种文摘
|
In this paper,the auto-ignition mechanism in the gaseous detonation propagation of the stoichiometric H_2-air detonable mixture in a straight tube was numerically studied using an overall onestep chemical reaction model and a detailed chemical reaction model based on the two-dimensional Euler equations.Meanwhile,the ignition delay times predicted by different models under different pressures and at different temperatures were compared and the propagation process of triple-shock points and the cell sizes were investigated.The results demonstrated that the cell sizes are proportional to the ignition delay times,and the ignition delay time in the induction zone is consistent with the average movement period of the triple-shock points.The leading shock compresses the detonable gas and then both the temperature and the pressure of the gas rise.The gas with high temperature and pressure soon finishes the process of auto-ignition,and a lot of heat is released during the ignition to maintain the detonation propagation,which means the auto-ignition mechanism ensures the self-sustained detonation propagation.The ignition delay time is considered as a chemical time scale characterizing the chemical reaction.The period of the movement of the triple-shock points is a characteristic time scale of shock dynamics.The coupling of these two time scales is a principal mechanism in gaseous detonation propagation. |
来源
|
爆炸与冲击
,2017,37(2):274-282 【核心库】
|
DOI
|
10.11883/1001-1455(2017)02-0274-09
|
关键词
|
胞格爆轰波
;
自点火
;
点火延迟时间
;
三波点
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-1455 |
学科
|
力学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5959803
|
参考文献 共
19
共1页
|
1.
Lee J H S.
The detonation phenomenon,2008
|
CSCD被引
64
次
|
|
|
|
2.
滕宏辉. 可燃气体中激波与障碍物作用在下游形成爆轰波的数值研究.
爆炸与冲击,2007,27(3):251-258
|
CSCD被引
6
次
|
|
|
|
3.
滕宏辉.
气相爆轰波形成和传播机制的基础问题研究,2008
|
CSCD被引
1
次
|
|
|
|
4.
王昌建. 直管内胞格爆轰的基元反应数值研究.
爆炸与冲击,2005,25(5):405-416
|
CSCD被引
13
次
|
|
|
|
5.
滕宏辉. 用环形激波聚焦实现爆轰波直接起爆的数值模拟.
爆炸与冲击,2005,25(6):512-518
|
CSCD被引
12
次
|
|
|
|
6.
Gamezo V N. Two-dimensional reactive flow dynamics in cellular detonation waves.
Shock Waves,1999,9(1):11-17
|
CSCD被引
17
次
|
|
|
|
7.
Sharpe G J. Transverse waves in numerical simulations of cellular detonations.
Journal of Fluid Mechanics,2001,447:31-52
|
CSCD被引
11
次
|
|
|
|
8.
Choi J Y. Some numerical issues on simulation of detonation cell structures.
Combustion, Explosion,and Shock Waves,2008,44(5):560-578
|
CSCD被引
4
次
|
|
|
|
9.
Oran E S. Numerical simulations of detonation transmission.
Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1992,436(1897):267-297
|
CSCD被引
2
次
|
|
|
|
10.
姜宗林. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究.
中国科学:物理学 力学 天文学,2012,42(4):421-435
|
CSCD被引
14
次
|
|
|
|
11.
Lee J H S. Dynamic parameters of gaseous detonations.
Annual Review of Fluid Mechanics,1984,16(1):311-336
|
CSCD被引
37
次
|
|
|
|
12.
张薇. 气相爆轰波胞格尺度与点火延迟时间关系研究.
力学学报,2014,46(6):977-981
|
CSCD被引
6
次
|
|
|
|
13.
Stankovic I. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms.
Combustion Theory and Modelling,2011,15(3):409-436
|
CSCD被引
2
次
|
|
|
|
14.
刘云峰. 详细化学反应模型中温度修正项特性研究.
中国科学:物理学 力学 天文学,2011,41(11):1296-1306
|
CSCD被引
2
次
|
|
|
|
15.
Burke M P. Comprehensive H_2/O_2 kinetic model for high-pressure combustion.
International Journal of Chemical Kinetics,2012,44(7):444-474
|
CSCD被引
20
次
|
|
|
|
16.
Hayashi A K.
Fundamentals of hydrogen ignition and high pressure hydrogen jet auto-ignition,2008
|
CSCD被引
1
次
|
|
|
|
17.
赵真龙. 计算氢气/空气混合物着火延迟时间的相关函数.
科学通报,2010(11):1063-1069
|
CSCD被引
1
次
|
|
|
|
18.
Shepherd J E.
Detonation database,2005
|
CSCD被引
2
次
|
|
|
|
19.
Taylor B D. Numerical simulations of hydrogen detonations with detailed chemical kinetics.
Proceedings of the Combustion Institute,2013,34(2):2009-2016
|
CSCD被引
4
次
|
|
|
|
|