装甲钢温度-组织-应力耦合本构模型的建立及在焊接模拟中的应用
Establishment of Thermo-metallurgical-mechanical Coupling Constitutive Model for Armour Steel and Its Application in Welding Numerical Simulation
查看参考文献24篇
文摘
|
装甲钢焊接热循环过程中固态相变对焊接残余应力的演变及大小有着重要影响,而现有的有限元软件本构模型无法考虑固态相变的作用。在传热学、固态相变理论和连续介质力学的基础上,建立了温度-组织-应力耦合的本构模型,本构模型中综合考虑了固态相变引起的体积变化、力学性能变化和相变塑性对焊接残余应力的影响,采用ABAQUS子程序UMAT通过二次开发将该本构模型嵌入通用有限元软件中,对装甲钢平板对接焊进行研究,获得了装甲钢焊接热循环过程中温度、组织及残余应力变化规律。研究结果表明:装甲钢平板中断面表面宽度方向,在纵向残余应力表征上,耦合本构模型的模拟结果与X射线衍射测量结果具有较好的一致性,验证了耦合本构模型的正确性,并表明相变塑性对相变区的残余应力存在一定的松弛作用;对于装甲钢近缝区纵向残余应力大小:完全相变区<部分相变区<未发生相变区。 |
其他语种文摘
|
Solid-state phase transformation has significant effect on the evolution and magnitude of welding residual stress for armour steel during welding thermal cycle, while the current constitutive model can not take solid-state phase transformation into account. Based on heat transfer theory, solid-state phase transformation theory and continuum mechanics, a thermo-metallurgical-mechanical coupling constitutive model in which the effects of volumetric change, yield strength change and transformation induced plasticity(TRIP) on residual stresses due to solid-state phase transformation on welding residual stress are considered is established. The constitutive model is inserted into a general purpose implicit finite element program via user material subroutine UMAT. The change rules of temperature, microstructure and residual stresses are obtained for a butt welding of armour steel plates. The research results show that longitudinal residual stresses obtained from the coupling constitutive model are in good agreement with experimental results measured by X-ray diffraction perpendicular to weld centerline on the upper surface of the weldment. The correctness of developed computational method is confirmed, and TRIP has certain effects on the evolution of longitudinal residual stresses. For the magnitude of longitudinal residual stresses in the vicinity of weld zone, the fully-transformed region is less than partially-transformed region, and the partially-transformed region is less than untransformed region. |
来源
|
兵工学报
,2017,38(3):540-548 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2017.03.017
|
关键词
|
兵器科学与技术
;
装甲钢
;
耦合本构模型
;
有限元
;
焊接残余应力
;
组织
|
地址
|
西北机电工程研究所, 陕西, 咸阳, 712099
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:5959183
|
参考文献 共
24
共2页
|
1.
Deng D A. Prediction of the Residual Welding Stress in 2.25Cr-1Mo Steel by Taking into Account the Effect of the Solid-State Phase Transformations.
Acta Metallurgica Sinica: English Letters,2013,26(3):333-339
|
CSCD被引
7
次
|
|
|
|
2.
Lindgren L E.
Computational welding mechanics,2007
|
CSCD被引
2
次
|
|
|
|
3.
Oddy A S. Consistent strain fields in 3D finite element analysis of welds.
Journal of Pressure Vessel Technology,1990,112(8):309-311
|
CSCD被引
1
次
|
|
|
|
4.
Oddy A S. Numerical analysis of transformation plasticity in 3D finite element analysis of welds.
European Journal of Mechanics, A/Solids,1990,9(3):253-263
|
CSCD被引
2
次
|
|
|
|
5.
Leblond J B. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-I. Derivation of general relations.
Journal of the Mechanics & Physics of Solids,1986,34(4):395-409
|
CSCD被引
15
次
|
|
|
|
6.
Leblond J B. A theoretical and numerical approach to the plastic behavior of steels during phase transformations, II. Study of classical plasticity for ideal-plastic phases.
Journal of the Mechanics & Physics of Solids,1986,34(4):411-432
|
CSCD被引
11
次
|
|
|
|
7.
Leblond J B. Mathematical modeling of transformation plasticity in steels, I: case of ideal-plastic phases.
International Journal of Plasticity,1989,5(6):511-572
|
CSCD被引
25
次
|
|
|
|
8.
Leblond J B. Mathematical modeling of transformation plasticity in steels II: coupling with strain hardening phenomena.
International Journal of Plasticity,1989,5(6):573-591
|
CSCD被引
9
次
|
|
|
|
9.
Inoue T. Coupling between stress, temperature, and metallic structures during processes involving phase transformations.
Materials Science and Technology,1984,1(10):845-850
|
CSCD被引
12
次
|
|
|
|
10.
Ronda J. Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation-induced plasticity.
Computer Methods in Applied Mechanics and Engineering,2000,189(2):361-417
|
CSCD被引
7
次
|
|
|
|
11.
刘俊龑. 基于相变诱导塑性Satoh试验的有限元模拟.
焊接学报,2008,29(3):105-108
|
CSCD被引
1
次
|
|
|
|
12.
刘俊龑. 焊接残余应力的温度-组织-应力耦合分析.
焊接学报,2009,30(2):95-98
|
CSCD被引
1
次
|
|
|
|
13.
邓德安. 相变塑性对低温相变钢焊接接头残余应力计算精度的影响.
焊接学报,2014,35(8):9-12
|
CSCD被引
7
次
|
|
|
|
14.
邓德安. 固态相变对P92钢焊接接头残余应力的影响.
金属学报,2016,52(4):394-402
|
CSCD被引
23
次
|
|
|
|
15.
Ma N. Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment.
Materials & Design,2015,88:1296-1309
|
CSCD被引
6
次
|
|
|
|
16.
Goldak J. A new finite element model for welding heat sources.
Metallurgical and Materials Transactions B,1984,15(2):299-305
|
CSCD被引
303
次
|
|
|
|
17.
Inoue T. Development and implementation of CAE system 'HEARTS' for heat treatment simulation based on metallo-thermo-mechanics.
Journal of Materials Engineering and Performance,1997,6(1):51-60
|
CSCD被引
21
次
|
|
|
|
18.
Kosistinen D P. A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steel.
Acta Metallurgica,1959,7(1):59-60
|
CSCD被引
130
次
|
|
|
|
19.
孙朝阳.
装甲钢马氏体相变本构行为研究及在淬火模拟中的应用,2008:21-33
|
CSCD被引
3
次
|
|
|
|
20.
Coret M. A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels).
International Journal of Mechanical Sciences,2002,44(9):1947-1963
|
CSCD被引
8
次
|
|
|
|
|