爆炸成型弹丸成型过程中的断裂数值模拟及机理分析
Numerical Simulation and Mechanism Analysis of EFP's Fracture in Forming Process
查看参考文献21篇
文摘
|
为研究爆炸成型弹丸(EFP)轴向断裂机理,采用有限元分析软件LS-DYNA,引入Johnson-Cook失效模型及自适应算法,对典型EFP装药结构不同外曲率球缺形药型罩OFHC铜EFP成型过程中的断裂进行数值模拟,并通过实验进行验证。采用应力波理论分析了长杆形EFP轴向断裂机理并确定了速度梯度断裂临界值。研究结果表明:基于Johnson-Cook失效模型及自适应算法,采用LS-DYNA软件可较好地模拟EFP成型过程中的断裂现象;对于特定EFP装药结构的球缺形药型罩,存在药型罩曲率临界值使长杆形EFP发生轴向断裂;应力波理论计算所得速度临界值(60~83 m/s)与数值模拟所得EFP速度梯度断裂临界值(76 m/s)吻合较好。该研究结果对OFHC铜EFP的设计具有参考意义,理论分析方法可应用于确定长杆形EFP的速度梯度断裂临界值,并为新材料在EFP药型罩中的应用提供参考。 |
其他语种文摘
|
In order to study the fracture mechanism of explosively-formed projectile (EFP) in axial direction, the forming and fracturing processes of OFHC EFP with typical charge structure are simulated by using LS-DYNA software, in which Johnson-Cook failure model and adaptive algorithm are introduced. Hemispherical liners with different extrinsic curvatures are simulated, and the simulated results of fracture are validated through experiment. The stress wave theory is used to analyze the fracture mechanism of long rod EFP, and confirm the critical velocity gradient. The results show that the fracture phenomenon of EFP can be well simulated by using LS-DYNA software based on Johnson-Cook failure model and adaptive algorithm. For certain EFP charge structure with hemispherical liner, a critical liner curvature which makes the long rod EFP fracture in forming process exists. The critical value of 60~83 m/s calculated from stress wave theory agrees well with the critical velocity gradient (76 m/s) of EFP fracture. The theoretical analysis method can be used to confirm the critical velocity gradient of long rod EFP fracture. |
来源
|
兵工学报
,2017,38(3):417-423 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2017.03.001
|
关键词
|
兵器科学与技术
;
爆炸成型弹丸
;
数值模拟
;
实验验证
;
断裂机理
;
Johnson-Cook失效模型
|
地址
|
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金委员会-中国工程物理研究院“NSAF联合基金”
;
爆炸科学与技术国家重点实验室自主课题项目
|
文献收藏号
|
CSCD:5959167
|
参考文献 共
21
共2页
|
1.
杨绍卿.
灵巧弹药工程,2010
|
CSCD被引
38
次
|
|
|
|
2.
隋树元.
终点效应学,2000
|
CSCD被引
190
次
|
|
|
|
3.
Mayseless M. Very long standoff penetration of shaped-charge jets.
28th International Symposium on Ballistics,2014:195-206
|
CSCD被引
1
次
|
|
|
|
4.
Frueh P. Aiming at quantifying the deceleration of shaped charge jet particles in air at large stand-offs.
28th International Symposium on Ballistics,2014:1424-1433
|
CSCD被引
1
次
|
|
|
|
5.
马彬. 磁场抑制断裂聚能射流颗粒翻转试验研究与数值模拟.
弹道学报,2015,27(4):77-83
|
CSCD被引
4
次
|
|
|
|
6.
马彬. 磁场抑制聚能射流颗粒翻转研究.
兵工学报,2016,37(4):603-611
|
CSCD被引
2
次
|
|
|
|
7.
陈莉. 断裂射流冲击夹层装药的仿真研究.
兵器材料科学与工程,2016,39(2):95-97
|
CSCD被引
1
次
|
|
|
|
8.
Mayseless M. Very long standoff dispersion and penetration of shaped-charge jets.
29th International Symposium on Ballistics,2016:1414-1424
|
CSCD被引
1
次
|
|
|
|
9.
Fong R. Advances in non-tantalum EFP warhead designs.
21st International Symposium on Ballistics,2004:721-727
|
CSCD被引
1
次
|
|
|
|
10.
Thompson L. Segmented EFP individual particle surrogate developmet.
25th international symposium on ballistics,2010:845-853
|
CSCD被引
1
次
|
|
|
|
11.
Bergh M. Material models for tantalum-a validation study for EFP application.
26th International Symposium on,2011:93-102
|
CSCD被引
1
次
|
|
|
|
12.
Johnson G R. A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures.
7th International Symposium on Ballistics,1983:541-547
|
CSCD被引
26
次
|
|
|
|
13.
Johnson G R. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressres.
Engineering Fracture Mechanics,1985,21(1):31-48
|
CSCD被引
663
次
|
|
|
|
14.
陈刚. 45钢的J-C损伤失效参量研究.
爆炸与冲击,2007,27(2):131-135
|
CSCD被引
49
次
|
|
|
|
15.
陈大年. 高导无氧铜的临界冲击拉伸速度.
爆炸与冲击,2009,29(2):113-118
|
CSCD被引
5
次
|
|
|
|
16.
王礼立.
应力波基础. (第2版),2005
|
CSCD被引
9
次
|
|
|
|
17.
孙茂才.
金属力学性能,2003
|
CSCD被引
25
次
|
|
|
|
18.
Klepaczko J R. Review on critical impact velocities in tension and shear.
International Journal of Impact Engineering,2005,32(1/2/3/4):188-209
|
CSCD被引
5
次
|
|
|
|
19.
Klepaczko J R. Generalized conditions for stability in tension tests.
International Journal of Mechanical Sciences,1968,10(4):297-313
|
CSCD被引
1
次
|
|
|
|
20.
Pappu S. Hydrocode and microstructural analysis of explosively formed penetrators.
Journal of Materials Science,2002,37(2):233-248
|
CSCD被引
10
次
|
|
|
|
|