TC16钛合金辊模拉丝过程中的显微组织和力学性能
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing
查看参考文献36篇
文摘
|
利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α"马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。 |
其他语种文摘
|
Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of a and β phases after roller die drawing at room temperature, and a small quantity of stress-induced a" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both a phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case. |
来源
|
金属学报
,2017,53(4):415-422 【核心库】
|
DOI
|
10.11900/0412.1961.2016.00424
|
关键词
|
TC16钛合金
;
辊模拉丝
;
显微组织
;
力学性能
;
晶粒细化
|
地址
|
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
辽宁省博士启动基金
|
文献收藏号
|
CSCD:5958932
|
参考文献 共
36
共2页
|
1.
Terada D. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process.
J. Mater. Sci,2007,42:1673
|
CSCD被引
16
次
|
|
|
|
2.
Gunderov D V. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing.
Mater. Sci. Eng. A,2013,562:128
|
CSCD被引
18
次
|
|
|
|
3.
Mishnaevsky L Jr. Nanostructured titanium-based materials for medical implants: Modeling and development.
Mater. Sci. Eng. R,2014,81:1
|
CSCD被引
12
次
|
|
|
|
4.
Sabirov I. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route.
Scr. Mater,2011,64:69
|
CSCD被引
10
次
|
|
|
|
5.
Stolyarov V V. A two step SPD processing of ultrafine-grained titanium.
Nanostruct. Mater,1999,11:947
|
CSCD被引
25
次
|
|
|
|
6.
Li Z M. Effects of annealing on microstructure and mechanical properties of nanograined titanium produced by combination of asymmetric and symmetric rolling.
Mater. Sci. Eng. A,2012,558:309
|
CSCD被引
14
次
|
|
|
|
7.
Yapici G G. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature.
Acta Mater,2006,54:3755
|
CSCD被引
19
次
|
|
|
|
8.
Saitova L R. Fatigue behavior of ultra-fine-grained Ti-6Al-4V 'ELI'alloy for medical applications.
Mater. Sci. Eng. A,2009,503:145
|
CSCD被引
6
次
|
|
|
|
9.
Valiev R Z. Bulk nanostructured materials from severe plastic deformation.
Prog. Mater. Sci,2000,45:103
|
CSCD被引
506
次
|
|
|
|
10.
Wang Y C. Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion.
J. Mater. Sci,2013,48:4646
|
CSCD被引
4
次
|
|
|
|
11.
Wang Y C. Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion.
Mater. Sci. Eng. A,2013,559:861
|
CSCD被引
6
次
|
|
|
|
12.
Ko Y G. Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy.
Scr. Mater,2003,48:197
|
CSCD被引
9
次
|
|
|
|
13.
Yilmazer H. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.
Mater. Sci. Eng. C,2013,33:2499
|
CSCD被引
5
次
|
|
|
|
14.
Yilmazer H. Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion.
Acta Mater,2014,80:172
|
CSCD被引
1
次
|
|
|
|
15.
Cojocaru V D. Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-lOZr-5Nb-5Ta alloy.
J. Alloys Compd,2013,546:260
|
CSCD被引
1
次
|
|
|
|
16.
Lin Z J. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).
Mater. Sci. Eng. C,2013,33:4551
|
CSCD被引
6
次
|
|
|
|
17.
Kent D. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.
J. Mech. Behav. Biomed. Mater,2011,4:405
|
CSCD被引
14
次
|
|
|
|
18.
Semiatin S L. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure.
Acta Mater,2001,49:3565
|
CSCD被引
63
次
|
|
|
|
19.
Zherebtsov S. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing.
Acta Mater,2011,59:4138
|
CSCD被引
64
次
|
|
|
|
20.
Park C H. Formation of a submicrocrys-talline structure in a two-phase titanium alloy without severe plastic deformation.
Scr. Mater,2013,68:996
|
CSCD被引
2
次
|
|
|
|
|