帮助 关于我们

返回检索结果

TC16钛合金辊模拉丝过程中的显微组织和力学性能
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing

查看参考文献36篇

文摘 利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α"马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。
其他语种文摘 Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of a and β phases after roller die drawing at room temperature, and a small quantity of stress-induced a" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both a phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case.
来源 金属学报 ,2017,53(4):415-422 【核心库】
DOI 10.11900/0412.1961.2016.00424
关键词 TC16钛合金 ; 辊模拉丝 ; 显微组织 ; 力学性能 ; 晶粒细化
地址

中国科学院金属研究所, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 金属学与金属工艺
基金 辽宁省博士启动基金
文献收藏号 CSCD:5958932

参考文献 共 36 共2页

1.  Terada D. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J. Mater. Sci,2007,42:1673 CSCD被引 16    
2.  Gunderov D V. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A,2013,562:128 CSCD被引 18    
3.  Mishnaevsky L Jr. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R,2014,81:1 CSCD被引 12    
4.  Sabirov I. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route. Scr. Mater,2011,64:69 CSCD被引 10    
5.  Stolyarov V V. A two step SPD processing of ultrafine-grained titanium. Nanostruct. Mater,1999,11:947 CSCD被引 25    
6.  Li Z M. Effects of annealing on microstructure and mechanical properties of nanograined titanium produced by combination of asymmetric and symmetric rolling. Mater. Sci. Eng. A,2012,558:309 CSCD被引 14    
7.  Yapici G G. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature. Acta Mater,2006,54:3755 CSCD被引 19    
8.  Saitova L R. Fatigue behavior of ultra-fine-grained Ti-6Al-4V 'ELI'alloy for medical applications. Mater. Sci. Eng. A,2009,503:145 CSCD被引 6    
9.  Valiev R Z. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci,2000,45:103 CSCD被引 506    
10.  Wang Y C. Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion. J. Mater. Sci,2013,48:4646 CSCD被引 4    
11.  Wang Y C. Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion. Mater. Sci. Eng. A,2013,559:861 CSCD被引 6    
12.  Ko Y G. Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy. Scr. Mater,2003,48:197 CSCD被引 9    
13.  Yilmazer H. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater. Sci. Eng. C,2013,33:2499 CSCD被引 5    
14.  Yilmazer H. Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Mater,2014,80:172 CSCD被引 1    
15.  Cojocaru V D. Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-lOZr-5Nb-5Ta alloy. J. Alloys Compd,2013,546:260 CSCD被引 1    
16.  Lin Z J. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP). Mater. Sci. Eng. C,2013,33:4551 CSCD被引 6    
17.  Kent D. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. J. Mech. Behav. Biomed. Mater,2011,4:405 CSCD被引 14    
18.  Semiatin S L. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure. Acta Mater,2001,49:3565 CSCD被引 63    
19.  Zherebtsov S. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing. Acta Mater,2011,59:4138 CSCD被引 64    
20.  Park C H. Formation of a submicrocrys-talline structure in a two-phase titanium alloy without severe plastic deformation. Scr. Mater,2013,68:996 CSCD被引 2    
引证文献 2

1 任德春 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 金属学报,2019,55(4):480-488
CSCD被引 4

2 王泽龙 冷塑性变形及退火工艺对Ti45Nb合金组织和性能的影响 金属热处理,2024,49(5):112-117
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号