类金刚石膜研究进展
Progress of Diamond-like Carbon Films
查看参考文献85篇
文摘
|
类金刚石膜具有高硬度、高热导率、低摩擦因数、良好的耐磨性能和化学惰性等优异的物化性能,在热沉、微电子、抗核加固、生物和汽车工业等领域具有重大的应用前景,近年来吸引了众多研究和关注。文章综述了类金刚石膜的研究进展和膜的成核机理,展示了类金刚石的应用前景,为该材料的研究和工业化应用提供思路和参考。 |
其他语种文摘
|
Diamond-like carbon (DLC) films had many unique and outstanding properties such as high thermal conductivity,high hardness, excellent chemical inertness,low friction coefficients and wear coefficients. The properties and combinations were very promising for heat sink, micro-electromechanical devices, radiation hardening, biomedical devices,automotive industry and other technical applications ,more research and a lot of attention were attracted in recent years. The research progress of diamond-like films and the nucleation mechanism of film were summarized,and application prospect of DLC films were demonstrated. The aim of this paper is to provide insights on the research trend of DLC films and the industry applications. |
来源
|
材料工程
,2017,45(3):119-128 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2015.000229
|
关键词
|
类金刚石膜
;
成膜机理
;
结合力
;
摩擦性能
|
地址
|
1.
西南科技大学, 核废物与环境安全国防重点学科实验室, 四川, 绵阳, 621010
2.
香港大学工学院土木工程系, 香港, 999077
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
物理学 |
基金
|
国家自然科学基金资助项目
;
香港研究资助局(RGC)项目
;
西南科技大学核废物与环境安全国防重点学科实验室基金资助
|
文献收藏号
|
CSCD:5949325
|
参考文献 共
85
共5页
|
1.
May P W. The new diamond age.
Sicence,2008,319(5869):1490-1491
|
CSCD被引
9
次
|
|
|
|
2.
Robertson J. Diamond-like amorphous carbon.
Mater Sci Eng R,2002,37(4/6):129-281
|
CSCD被引
441
次
|
|
|
|
3.
吕反修. CVD金刚石膜新兴研究方向及市场现状与趋势.
金属热处理,2008,33(11):1-5
|
CSCD被引
6
次
|
|
|
|
4.
Erdemir A C. Tribology of diamond-like carbon films: recent progress and future prospects.
J Phys D: Appl Phys,2006,39(18):R311
|
CSCD被引
55
次
|
|
|
|
5.
Bewilogua K. History of diamond-like carbon films: from first experiments to worldwide applications.
Surf Coat Tech,2014,242:214-225
|
CSCD被引
30
次
|
|
|
|
6.
柳翠.
类金刚石碳膜制备工艺及掺杂性能研究,2005
|
CSCD被引
1
次
|
|
|
|
7.
赵海龙. 射频磁控溅射法制备类金刚石薄膜的研究.
机械科学与技术,2007,26(10):1277-1280
|
CSCD被引
5
次
|
|
|
|
8.
Bundy F P. Man-made diamonds.
Nature,1955,176(4471):51-55
|
CSCD被引
81
次
|
|
|
|
9.
Zhao X Z. Hydrothermal growth of diamond in metal-C-H_2 O systems.
Nature,1997,385(6616):513-515
|
CSCD被引
5
次
|
|
|
|
10.
Burkhard G. Carbon phase transition by dynamic shock compression of a copper/graphite powder mixture.
Jpn J Appl Phys,1994,33(6B):L876-L879
|
CSCD被引
2
次
|
|
|
|
11.
Angus J C. Low-pressure, metastable growth of diamond and "diamondlike" phases.
Science,1998,241(4868):913-921
|
CSCD被引
25
次
|
|
|
|
12.
Roy R. New process for atm diamond synthesis: from metallic solutions.
Innov Mater Res,1996,1(1):65-87
|
CSCD被引
2
次
|
|
|
|
13.
Gruen D M. Buckyball microwave plasmas: fragmentation and diamond-film growth.
J Appl Phys,1994,75(3):1758-1763
|
CSCD被引
9
次
|
|
|
|
14.
Regueiro M N. Crushing C~(60) to diamond at room temperature.
Nature,1992,355(6357):237-239
|
CSCD被引
5
次
|
|
|
|
15.
Daulton T L. Radiation-induced diamond formation in uranium-rich carbonaceous materials.
Science,1996,271(5253):1260-1263
|
CSCD被引
2
次
|
|
|
|
16.
Li Y. A Reduction-pyrolysis-catalysis synthesis of diamond.
Science,1998,281(5374):246-248
|
CSCD被引
34
次
|
|
|
|
17.
Gogotsi Y. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure.
Nature,2001,411(6835):283-287
|
CSCD被引
17
次
|
|
|
|
18.
Lou Z. Diamond formation by reduction of carbon dioxide at low temperatures.
J Am Chem Soc,2003,125(31):9302-9303
|
CSCD被引
7
次
|
|
|
|
19.
Schmellemeier H. Die beeinflussung von festen oberflachen durch eine ionisierte gasatmosphare.
Exp Tech Phys,1953,1:4968
|
CSCD被引
1
次
|
|
|
|
20.
Aisenberg S. Ion-beam deposition of thin films of diamondlike carbon.
J Appl Phys,1971,42(7):2953-2958
|
CSCD被引
59
次
|
|
|
|
|