时空轨迹分类研究进展
Research Progress of Spatial-temporal Trajectory Classification
查看参考文献36篇
文摘
|
时空轨迹分类旨在为一条轨迹预测类别。时空轨迹分类在城市规划、个性化用户推荐等方面具有重要应用价值,其过程主要包括轨迹数据预处理、特征提取、建立分类器3个阶段。本文综述了近年来时空轨迹分类的研究进展,首先对时空轨迹分类的过程进行概述;然后将时空轨迹分类算法按特征提取的方式分为基于运动特征的轨迹分类算法、基于分类规则的轨迹分类算法和基于图像信号分析的轨迹分类算法3类,分别论述了这些算法的基本思想和优缺点;之后对现有的轨迹分类算法从数据来源、分类器、特征提取方式等方面进行对比分析;最后讨论现有的时空轨迹分类算法面临的挑战。 |
其他语种文摘
|
Spatial-temporal trajectory classification aims at predicting the category of a spatial-temporal trajectory. The classification of spatial-temporal trajectories plays an important role in urban planning, personalized user recommendation and so on. The process of trajectory classification includes three stages: trajectory preprocessing, feature extraction and classification. This paper reviews the recent research progress on trajectory classification. Firstly, we introduce the process of trajectory classification. Then, the trajectory classification algorithms are classified into three categories according to the method of feature extraction, including the trajectory classification algorithm based on motion feature, the trajectory classification algorithm based on classification rule and the trajectory classification algorithm based on image signal analysis. We also discuss the basic ideas, advantages and disadvantages of these algorithms. Thirdly, we compare the existing classification algorithms according to the sensors, feature extraction and classifiers used in these algorithms. Finally, we introduce the challenges of the existing trajectory classification algorithms. |
来源
|
地球信息科学学报
,2017,19(3):289-297 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.00289
|
关键词
|
时空轨迹分类
;
时空轨迹挖掘
;
时空数据挖掘
|
地址
|
南京师范大学计算机科学与技术学院, 南京, 210023
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5942939
|
参考文献 共
36
共2页
|
1.
Biljecki F. Transportation mode-base segmentation and classification of movement trajectories.
International Journal of Geographical Information Science,2013,27(2):385-407
|
CSCD被引
11
次
|
|
|
|
2.
Mountain D. Modelling human spatio-temporal behaviour: A challenge for location-based services.
Proceedings of 6th International Conference on Geocomputation,2001:24-26
|
CSCD被引
1
次
|
|
|
|
3.
Zheng Y. Understanding transportation modes based on GPS data for web applications.
Acm Transactions on the Web,2010,4(1):495-507
|
CSCD被引
23
次
|
|
|
|
4.
Lee J G. TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering.
Proceedings of the Vldb Endowment,2008,1(1):1081-1094
|
CSCD被引
11
次
|
|
|
|
5.
Patel D. Incorporating duration and region association information in trajectory classification.
Journal of Location Based Services,2012,7(4):246-271
|
CSCD被引
2
次
|
|
|
|
6.
Zhu Y.
Inferring taxi status using GPS trajectories. Tech.Rep.MSR-TR-2011-144,2011
|
CSCD被引
1
次
|
|
|
|
7.
Lee J G. Trajectory outlier detection: Apartition and detect framework.
Proceedings of the 24th International Conference on Data Engineering,2008:140-149
|
CSCD被引
7
次
|
|
|
|
8.
Krumm J. LOCADIO: Inferring motion and location from Wi-Fi signal strengths.
International Conference on Mobile and Ubiquitous Systems: NETWORKING and Services,2004:4-13
|
CSCD被引
1
次
|
|
|
|
9.
Yin J. High-level goal recognition in a wireless LAN.
Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence,2004:578-584
|
CSCD被引
1
次
|
|
|
|
10.
Zheng Y. Trajectory data mining: An overview.
Acm Transactions on Intelligent Systems & Technology,2015,6(3):1-41
|
CSCD被引
115
次
|
|
|
|
11.
Gonzalez P A. Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones.
15th World Congress on Intelligent Transport Systems and ITS America's 2008 Annual Meeting,2008:30267-30279
|
CSCD被引
1
次
|
|
|
|
12.
肖艳丽. 移动数据的交通出行方式识别方法.
智能系统学报,2014,9(5):536-543
|
CSCD被引
3
次
|
|
|
|
13.
Assemi B. Developing and validating a statistical model for travel mode identification on smartphones.
IEEE Transactions on Intelligent Transportation Systems,2016,17(7):1920-1931
|
CSCD被引
3
次
|
|
|
|
14.
Wang H. Transportation mode inference from anonymized and aggregated mobile phone call detail records.
13th International IEEE Conference on Intelligent Transportation Systems (ITSC),2010:318-323
|
CSCD被引
1
次
|
|
|
|
15.
Zhu W. Applying semi-supervised learning method for cellphone-based travel mode classification.
Smart Cities Conference (ISC2),2015:1-6
|
CSCD被引
1
次
|
|
|
|
16.
Su X. Online travel mode identification using smartphones with battery saving considerations.
IEEE Transactions on Intelligent Transportation Systems,2016,99(1):1-14
|
CSCD被引
1
次
|
|
|
|
17.
Lin M. Detecting modes of transport from unlabeled positioning sensor data.
Journal of Location Based Services,2013,7(4):272-290
|
CSCD被引
2
次
|
|
|
|
18.
Zheng Y. Understanding mobility based on GPS data.
Ubiquitous Computing, International Conference,2008:312-321
|
CSCD被引
1
次
|
|
|
|
19.
Jahangiri A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor data.
IEEE transactions on intelligent transportation systems,2015,16(5):2406-2417
|
CSCD被引
8
次
|
|
|
|
20.
Shafique M A. A Comparison among various classification algorithms for travel mode detection using sensors' data collected by smartphones.
International Conference on Computers in Urban Planning and Urban Management,2015
|
CSCD被引
1
次
|
|
|
|
|