Viscous warm pressure bulging process of AZ31B magnesium alloy with different ellipticity dies
AZ31B镁合金不同椭圆度凹模黏性介质温热胀形工艺
查看参考文献21篇
文摘
|
Based on the bulging principle of different ellipticity dies, the methyl vinyl silicone rubber with excellent thermal stability and heat transfer performance was chosen as the viscous medium. The finite element analysis and experiments of viscous warm pressure bulging (VWPB) of AZ31B magnesium alloy were conducted to analyze the influence of different ellipticity dies on the formability of AZ31B magnesium alloy. At the same time, based on the grid strain rule, the forming limit diagram (FLD) of VWPB of AZ31B magnesium alloy was obtained through measuring the strain of bulging specimens. The results showed that at the temperature range of viscous medium thermal stability, the viscous medium can fit the geometry variation of sheet and generate non-uniform pressure field, and as the die ellipticity increases, the difference value of non-uniform pressure reduces. Meanwhile, according to the FLD, the relationship between part complexity and ultimate deformation was investigated. |
其他语种文摘
|
基于不同椭圆度凹模胀形原理,选择具有良好热稳定性和导热性能的甲基乙烯基硅橡胶作为黏性介质,进行AZ31B镁合金黏性介质温热胀形试验,并采用有限元分析软件ANSYS/LS-DYNA对成形过程进行分析。确定AZ31B镁合金黏性介质温热胀形最佳温度,以及凹模椭圆度对AZ31B镁合金黏性介质温热胀形变形规律的影响。同时根据网格应变原理,通过对不同椭圆度极限胀形试件的测量,绘制出AZ31B镁合金黏性介质温热成形极限图(FLD)。研究结果表明,在耐热温度范围内,热态黏性介质能够适应试件几何形状的变化建立非均匀压力场,非均匀压力差值随着椭圆度的增大而减小,根据极限胀形试验绘制出的成形极限图,能够综合反映出零件复杂程度与极限变形程度的关系。 |
来源
|
Transactions of Nonferrous Metals Society of China
,2017,27(1):157-162 【核心库】
|
DOI
|
10.1016/S1003-6326(17)60018-9
|
关键词
|
AZ31B magnesium alloy
;
viscous warm pressure bulging
;
formability
;
different ellipticity dies
;
forming limit diagram
|
地址
|
Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang, 110136
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
supported by the Natural Foundation of Liaoning Province, China
|
文献收藏号
|
CSCD:5941654
|
参考文献 共
21
共2页
|
1.
Chan L C. Material sentivity and formability prediction of warm-forming magnesium alloy sheets with experimental vertification.
The International Journal of Advanced Manufacturing Technology,2014,71(1):253-262
|
CSCD被引
6
次
|
|
|
|
2.
Lee Y S. Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming.
Journal of Materials Processing Technology,2007,187/188:103-107
|
CSCD被引
9
次
|
|
|
|
3.
Liu Di. Evolution of twins and texture and its effects on mechanical properties of AZ31 magnesium alloy sheets under different rolling process parameters.
Transactions of Nonferrous Metals Society of China,2015,25(11):3585-3594
|
CSCD被引
7
次
|
|
|
|
4.
Wang Lei. Formability of AZ31 Mg alloy sheets within medium temperatures.
Journal of Magnesium and Alloys,2013,1(4):312-317
|
CSCD被引
9
次
|
|
|
|
5.
Agnew S R. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B.
International Journal of Plasticity,2005,21(6):1161-1193
|
CSCD被引
179
次
|
|
|
|
6.
Maksoud I A. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy.
Materials Science and Engineering A,2009,504(1):40-48
|
CSCD被引
19
次
|
|
|
|
7.
Huang Guangsheng. Tensile properties and microstructure of AZ31B magnesium alloy sheet processed by repeated unidirectional bending.
Transactions of Nonferrous Metals Society of China,2010,20(1):28-33
|
CSCD被引
11
次
|
|
|
|
8.
Huang Guangsheng. Forming limit of textured AZ31B magnesium alloy sheet at different temperatures.
Transactions of Nonferrous Metals Society of China,2011,21(4):836-843
|
CSCD被引
13
次
|
|
|
|
9.
Zheng Wentao. Experimental research and FEM simulation on warm hydroforming of Mg alloy mobile phone cover.
Journal of Plasticity Engineering. (in Chinese),2006,13(5):92-95
|
CSCD被引
1
次
|
|
|
|
10.
Chang Qunfeng. Warm deep drawing of square parts of AZ31 magnesium alloy sheet adopting variable blank holder force.
China Mechanical Engineering. (in Chinese),2006,17(S1):16-18
|
CSCD被引
1
次
|
|
|
|
11.
Meng Zhenghua. Formability of AZ31 magnesium alloy sheet under warm and electromagnetic forming condition.
China Mechanical Engineering. (in Chinese),2011,22(2):239-242
|
CSCD被引
1
次
|
|
|
|
12.
Ambrogio G. Warm incremental forming of magnesium alloy AZ31.
CIRP Annals-Manufacturing Technology,2008,57(1):257-260
|
CSCD被引
16
次
|
|
|
|
13.
Liu Jianguang. Viscous pressure bulging of aluminium alloy sheet at warm temperatures.
Journal of Mechanical Science and Technology,2007,21(10):1505-1511
|
CSCD被引
3
次
|
|
|
|
14.
Gao Tiejun. Analysis of bulging process of aluminum alloy by overlapping sheet metal and its formability.
Transactions of Nonferrous Metals Society of China,2015,25(4):1050-1055
|
CSCD被引
9
次
|
|
|
|
15.
Wang Zhongjin. Sectional finite element analysis of coupled deformation between elastoplastic sheet metal and visco-elastoplastic body.
ACTA Mechanica Solida Sinica,2011,24(2):153-165
|
CSCD被引
3
次
|
|
|
|
16.
Gao Tiejun. Viscous inner and outer pressure forming method of thin-walled tube and its application.
Journal of Wuhan University of Technology:Mater Sci Ed,2015,30(2):404-407
|
CSCD被引
2
次
|
|
|
|
17.
Liu Jianguang. Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method.
Computational Materials Science,2010,48(2):381-389
|
CSCD被引
15
次
|
|
|
|
18.
Wang Hui. Forming of ellipse heads of large-scale austenitic stainless steel pressure vessel.
Procedia Engineering,2014,81:837-842
|
CSCD被引
2
次
|
|
|
|
19.
Yuan Shijian. Research on two-step hydro-bulge forming of ellipsoidal shell with large axis length ratio.
Journal of Harbin Institute of Technology,2013,20(3):93-98
|
CSCD被引
4
次
|
|
|
|
20.
Wang Wurong. Formability and numerical simulation of AZ31B magnesium alloy sheet in warm stamping process.
Materials and Design,2015,87:835-844
|
CSCD被引
5
次
|
|
|
|
|