基于相关分析的多目标优化Pareto优劣性预测
Prediction of Pareto Dominance Based on Correlation Analysis
查看参考文献26篇
文摘
|
昂贵多目标进化算法中,目标向量评估所需计算时间或实验成本高昂,大量昂贵评估必然导致成本灾难.本文根据多目标优化Pareto优劣性取决于各目标分量的序关系这一关键性质,提出一种序拟合方法进行Pareto优劣性预测.在分析样本数据决策空间与目标空间序相关性的基础上,通过线性相关的假设条件,建立低成本的序关系预测方程,并用预测的序关系确定Pareto优劣性.然后对典型多目标优化问题进行Pareto优劣性预测对比实验,结果表明所提方法显著提高了Pareto优劣性的预测精度.最后,将该预测方法集成到NSGA-II算法中,可以避免进化过程中的模型重构,有效减少昂贵目标向量的评估次数. |
其他语种文摘
|
In expensive multi-objective evolutionary algorithms,the evaluation of a large number of objective vectors spend a lot of time or experimental cost and lead to the cost of disaster.According to the fact that Pareto dominance relationships among candidate solutions are depended on the rank relationships of objective components,this paper proposes a predict method of rank equivalent to determine Pareto dominance.A decision vector and object vector rank matrix is established,and rank correlation analysis is used to calculate the correlation coefficient matrix R.Under the assumption of linear correlation,a prediction equation is established to predict rank relationships.Testing results on typical multi-objective optimization problems show that the proposed method only requires establishing a linear prediction model,which can remarkably improve the prediction accuracy and reduce the calculation of original expensive target function.Finally,the prediction method is integrated into the NSGA-II,it can avoid reconstruction the model in the process of evolution,then effectively decrease the number of evaluation for expensive objective vectors. |
来源
|
电子学报
,2017,45(2):459-467 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2017.02.027
|
关键词
|
相关分析
;
序关系预测
;
多目标优化
;
Pareto优劣性
|
地址
|
1.
中南大学信息科学与工程学院, 湖南, 长沙, 410083
2.
湖南理工学院信息与通信工程学院, 湖南, 岳阳, 414006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
湖南省省教育厅科学研究重点项目
;
湖南省高校科技创新团队计划资助
|
文献收藏号
|
CSCD:5939382
|
参考文献 共
26
共2页
|
1.
詹炜.
求解高维多目标优化问题的流形学习算法研究,2013
|
CSCD被引
2
次
|
|
|
|
2.
Zhou A. Multiobjective evolutionary algorithms: A survey of the state of the art.
Swarm & Evolutionary Computation,2011,1(1):32-49
|
CSCD被引
77
次
|
|
|
|
3.
Seah C W. Pareto rank learning in multi-objective evolutionary algorithms.
2012 IEEE Congress on Evolutionary Computation,2012:1-8
|
CSCD被引
1
次
|
|
|
|
4.
Jin Y. A systems approach to evolutionary multiobjective structural optimization and beyond.
IEEE Computational Intelligence Magazine,2009,4(3):62-76
|
CSCD被引
13
次
|
|
|
|
5.
Schneider G. Peptide design by artificial neural networks and computer-based evolutionary search.
Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12179-12184
|
CSCD被引
1
次
|
|
|
|
6.
Venske S M. ADEMO/D: an Adaptive Differential Evolution for Protein Structure Prediction Problem.
Expert Systems with Applications,2016,56:209-226
|
CSCD被引
2
次
|
|
|
|
7.
Zhang Q. Expensive multiobjective optimization by MOEA/D with Gaussian process model.
IEEE Transactions on Evolutionary Computation,2010,14(3):456-474
|
CSCD被引
34
次
|
|
|
|
8.
Liu B. A multi-Fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems.
Journal of Computational Science,2015,12:28-37
|
CSCD被引
3
次
|
|
|
|
9.
Liu B. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems.
IEEE Transactions on Evolutionary Computation,2014,18(2):180-192
|
CSCD被引
36
次
|
|
|
|
10.
Datta R. A surrogate-assisted evolution strategy for constrained multi-objective optimization.
Expert Systems with Applications,2016,57:270-284
|
CSCD被引
6
次
|
|
|
|
11.
Jin Y.
Reduction of fitness evaluations using clustering techniques and neural network ensembles: US,US7363281,2008
|
CSCD被引
1
次
|
|
|
|
12.
Pavelski L M. Extreme learning surrogate models in multi-objective optimization based on decomposition.
Neurocomputing,2016,180:55-67
|
CSCD被引
1
次
|
|
|
|
13.
Montemayor-Garcia G. A study of surrogate models for their use in multiobjective evolutionary algorithms.
International Conference on Electrical Engineering Computing Science and Automatic Control,2011:1-6
|
CSCD被引
1
次
|
|
|
|
14.
Deb K.
Multiobjective Optimization Using Evolutionary Algorithms,2001
|
CSCD被引
13
次
|
|
|
|
15.
Myers J L.
Research Design and Statistical Analysis,2013
|
CSCD被引
5
次
|
|
|
|
16.
Zitzler E. Comparison of multiobjective evolutionary algorithms: Empirical results.
Evolutionary computation,2000,8(2):173-195
|
CSCD被引
419
次
|
|
|
|
17.
Kursawe F.
A Variant of Evolution Strategies for Vector Optimization,1991
|
CSCD被引
1
次
|
|
|
|
18.
Deb K. Scalable multi-objective optimization test problems.
2002 IEEE Congress on Evolutionary Computation,2002:825-830
|
CSCD被引
73
次
|
|
|
|
19.
郭观七. 基于等价分量交叉相似性的Pareto 支配性预测.
自动化学报,2014,40(1):33-40
|
CSCD被引
6
次
|
|
|
|
20.
Kleijnen J P C. Kriging meta modeling in simulation: A review.
European Journal of Operational Research,2009,192(3):707-716
|
CSCD被引
71
次
|
|
|
|
|