剪切变形与部分熔融:原理、方法和应用
Shear Deformation and Partial Melting: Principles,Methods and Advances
查看参考文献105篇
文摘
|
差应力是各种地质构造现象,如地震活动、造山带的形成及各种动力学过程等产生的重要驱动力,因此研究剪切变形下部分熔融岩石的物理化学性质对正确认识地球各圈层的变形、地幔对流、板块构造运移、地球形成与演化等科学问题具有重要的意义。本文首先介绍了在高温高压及剪切变形下地球内部物质物性测量的原理和方法,然后对剪切变形下部分熔融岩石物性测量方面所取得的最新进展和一些重要的地学应用做了简要评述,最后对今后的研究前景及潜在的研究领域做出了展望。 |
其他语种文摘
|
Differential stress is the primary driving force for various geological tectonic phenomena including seismic activity,formation and evolution of the Earth,different dynamic processes,and so on. Knowledge of the physicochemical properties of partially molten rocks under the presence of differential stress is crucial to understand the deformation of various spheres of the Earth,mantle convection,plate tectonic movement,formation and evolution of the Earth. In this review,firstly,the principle and method of the physical properties of the Earth's materials measured simultaneously at high-temperature and high-pressure and differential stress are introduced. Secondly,the latest progresses and some of important applications to problems of Earth science are discussed based on the available deformation data on partially molten rocks. Finally,the prospects and potential research fields of physicochemical properties of the Earth's materials under differential stress are presented. |
来源
|
矿物岩石地球化学通报
,2017,36(1):26-39 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2017.01.004
|
关键词
|
高温高压
;
剪切变形
;
部分熔融
;
流变学
;
电导率
|
地址
|
中国科学院地球化学研究所, 中国科学院地球内部物质高温高压重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中组部“青年千人计划”项目
;
中国科学院“百人计划”前期项目
;
中国科学院先导专项B
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5936078
|
参考文献 共
105
共6页
|
1.
Ardia P. H_2O storage capacity of olivine at 5- 8 GPa and consequences for dehydration partial melting of the upper mantle.
Earth and Planetary Science Letters,2012,345/348:104-116
|
CSCD被引
14
次
|
|
|
|
2.
Bruhn D. An interconnected network of core-forming melts produced by shear deformation.
Nature,2000,403(6772):883-886
|
CSCD被引
7
次
|
|
|
|
3.
Caricchi L. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone.
Earth and Planetary Science Letters,2011,302(1/2):81-94
|
CSCD被引
8
次
|
|
|
|
4.
Cooper R F. Rheology and structure of olivinebasalt partial melts.
Journal of Geophysical Research,1986,91(B9):9315-9323
|
CSCD被引
10
次
|
|
|
|
5.
Dai L D. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine.
Earth and Planetary Science Letters,2014,408:79-86
|
CSCD被引
9
次
|
|
|
|
6.
Daines M J. Influence of deformation on melt topology in peridotites.
Journal of Geophysical Research,1997,102(B5):10257-10271
|
CSCD被引
6
次
|
|
|
|
7.
Evans R L. Geophysical evidence from the MELT area for compositional controls on oceanic plates.
Nature,2005,437(7056):249-252
|
CSCD被引
29
次
|
|
|
|
8.
Faul U H. Intergranular basaltic melt is distributed in thin,elogated inclusions.
Geophysical Research Letters,1994,21(1):29-32
|
CSCD被引
4
次
|
|
|
|
9.
Gaetani G A. Wetting of mantle olivine by sulfide melt: Implications for Re/Os ratios in mantle peridotite and late-stage core formation.
Earth and Planetary Science Letters,1999,169(1/2):147-163
|
CSCD被引
6
次
|
|
|
|
10.
Girard J. Shear deformation of bridgmanite and magnesiowustite aggregates at lower mantle conditions.
Science,2016,351(6269):144-147
|
CSCD被引
6
次
|
|
|
|
11.
Griggs D. Hydrolytic weakening of quartz and other silicates.
Geophysical Journal International,1967,14(1/4):19-31
|
CSCD被引
19
次
|
|
|
|
12.
Groebner N. Deformation-induced metal melt networks in silicates: Implications for core-mantle interactions in planetary bodies.
Earth and Planetary Science Letters,2006,245(3/4):571-580
|
CSCD被引
5
次
|
|
|
|
13.
Hansen L N. Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation.
Journal of Geophysical Research: Solid Earth,2011,116(B8):B08201
|
CSCD被引
6
次
|
|
|
|
14.
Hansen L N. Laboratory measurements of the viscous anisotropy of olivine aggregates.
Nature,2012,492(7429):415-418
|
CSCD被引
2
次
|
|
|
|
15.
He C R. An experimental study on semi-brittle and plastic rheology of Panzhihua gabbro.
Science in China Series D: Earth Sciences,2003,46(7):730-742
|
CSCD被引
9
次
|
|
|
|
16.
Hier-Majumder S. On grain boundary wetting during deformation.
Acta Materialia,2004,52(12):3425-3433
|
CSCD被引
4
次
|
|
|
|
17.
Hirose K. Deformation of MnGeO_3 post-perovskite at lower mantle pressure and temperature.
Geophysical Research Letters,2010,37(20):L20302
|
CSCD被引
1
次
|
|
|
|
18.
Hirth G. Experimental constraints on the dynamics of partially molten upper mantle: Deformation in the diffusion creep regime.
Journal of Geophysical Research,1995,100(B2):1981-2001
|
CSCD被引
23
次
|
|
|
|
19.
Hirth G. Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime.
Journal of Geophysical Research,1995,100(B8):15441-15449
|
CSCD被引
22
次
|
|
|
|
20.
Holtzman B K. Stress-driven melt segregation in partially molten rocks.
Geochemistry, Geophysics, Geosystems,2003,4(5):8607
|
CSCD被引
8
次
|
|
|
|
|