水溶性离子液体对甲苯的吸收效果及影响因素
Toluene absorption performance and influence factors for soluble ionic liquids
查看参考文献35篇
文摘
|
选择3种水溶性离子液体(十二烷基咪唑氯盐(DDMIM Cl)、十二烷基咪唑硝酸盐(DDMIM NO_3)、十二烷基咪唑双氰胺盐(DDMIM DCA))作为研究对象,对模拟甲苯废气进行吸收实验,研究了吸收液的吸收性能、甲苯浓度、吸收液浓度、进气气速以及盐度等因素对吸收效果的影响以及加热蒸馏法对吸收液的再生与甲苯回收的可行性。结果表明:不同的离子液体对甲苯的吸收率不同,DDMIM DCA的吸收效果最好,在质量分数为5%时,初始吸收率达到98%,饱和吸收量为53.39 mg·L~(-1),而DDMIM Cl、DDMIM NO_3对甲苯的初始吸收率在92%左右,饱和吸收量分别为33.60、37.01 mg·L~(-1);甲苯饱和吸收量与吸收液浓度、甲苯进气浓度呈正相关,与进气气速、含盐度呈负相关;传质系数与甲苯进气浓度、进气气速以及含盐度呈正相关,与吸收液浓度呈负相关;采用加热蒸馏法进行甲苯回收及吸收液再利用时,甲苯的回收效率达到85%~90%,且甲苯的饱和吸收量随着重复利用次数的增加而基本保持不变。因此利用离子液体溶液处理甲苯废气理论上是可行的。 |
其他语种文摘
|
A series of absorption experiments was conducted to analyze the gaseous toluene absorption capacity of three water-soluble absorbents: 1-dodecyl-3-methylimidazolium chloride (DDMIM Cl),DDMIM nitrate (DDMIM NO_3),and DDMIM dicyanamide (DDMIM DCA). The influence of such factors as the toluene concentration,absorbent content,gas flow rate,and mineral salt presence on the performances of these absorbents was assessed. The heating distillation method was used to investigate the possibility of toluene recovery and reuse of the absorbent solution. The experimental results showed that each ionic liquid has a different toluene absorption efficiency. At a toluene concentration of 5%,DDMIM DCA outperformed the other absorbents,with an initial absorption rate of 98% and a saturated absorption capacity of 53.39 mg·L~(-1). In comparison,DDMIM Cl and DDMIM NO_3 had initial toluene absorption rates of approximately 92% and saturated absorption capacities of 33.60 and 37.01 mg·L~(-1),respectively. The saturated absorption capacity was positively correlated with the absorbent concentration and toluene concentration of the inlet gas but negatively correlated with the inlet gas flow rate and mineral salt content. The mass transfer coefficient was positively correlated with the toluene concentration,inlet gas flow rate,and mineral salt content,but negatively correlated with the absorbent concentration. The recovery efficiency of toluene from the absorbent solution using the heating distillation method reached from 85% to 90%,and the saturated absorption capacity remained fairly consistent during regeneration. In conclusion,ionic liquids show potential for recovering toluene from waste gas. |
来源
|
环境工程学报
,2017,11(3):1683-1690 【核心库】
|
DOI
|
10.12030/j.cjee.201511034
|
关键词
|
离子液体
;
甲苯废气
;
蒸馏
;
再生
;
回收
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室;;广东省环境资源利用与保护重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-9108 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
广东省省级环保专项资金项目
;
广东省科技计划项目
|
文献收藏号
|
CSCD:5931464
|
参考文献 共
35
共2页
|
1.
Ding Xiang. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China.
Journal of Geophysical Research,2012,117(D5):D05313
|
CSCD被引
19
次
|
|
|
|
2.
王志良. 三苯类废气污染物及从业人员健康状况调查.
广州化学,2012,37(2):69-74
|
CSCD被引
2
次
|
|
|
|
3.
陈定盛. 废机油净化甲苯废气的工艺研究.
环境工程,2008,26(2):20-22
|
CSCD被引
11
次
|
|
|
|
4.
Heymes F. A new efficient absorption liquid to treat exhaust air loaded with toluene.
Chemical Engineering Journal,2006,115(3):225-231
|
CSCD被引
24
次
|
|
|
|
5.
Blach P. Cyclodextrins: A new efficient absorbent to treat waste gas streams.
Chemosphere,2008,70(3):374-380
|
CSCD被引
15
次
|
|
|
|
6.
麦戈. 水溶性吸收剂对甲苯废气的吸收性能.
环境科学研究,2015,28(10):1602-1609
|
CSCD被引
4
次
|
|
|
|
7.
Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis.
Chemical Reviews,1999,99(8):2071-2084
|
CSCD被引
733
次
|
|
|
|
8.
Liu Zhi. Mild oxidation of alcohols with O-iodoxybenzoic acid (IBX)in ionic liquid 1-butyl-3-methyl-imidazolium chloride and water.
Organic Letters,2003,5(18):3321-3323
|
CSCD被引
12
次
|
|
|
|
9.
Sun Hongjian. Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid.
Journal of Molecular Catalysis A: Chemical,2005,240(1/2):119-122
|
CSCD被引
2
次
|
|
|
|
10.
Smirnova S V. Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6.
Analytical and Bioanalytical Chemistry,2004,378(5):1369-1375
|
CSCD被引
14
次
|
|
|
|
11.
Yang Qiwei. Selective separation of tocopherol homologues by liquid-liquid extraction using ionic liquids.
Industrial & Engineering Chemistry Research,2009,48(13):6417-6422
|
CSCD被引
11
次
|
|
|
|
12.
Wang P. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells.
Applied Physics A: Materials Science & Processing,2004,79(1):73-77
|
CSCD被引
2
次
|
|
|
|
13.
Pradhan D. Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl)electrolytes.
Electrochimica Acta,2009,54(6):1874-1880
|
CSCD被引
10
次
|
|
|
|
14.
Wang Mei. Improvement of the CO_2 absorption performance using ionic liquid[NH_2 emim][BF_4] and[emim][BF_4]/[bmim][BF_4] mixtures.
Energy & Fuels,2013,27(1):461-466
|
CSCD被引
3
次
|
|
|
|
15.
Luis P. Facilitated transport of CO_2 and SO_2 through supported ionic liquid membranes (SILMs).
Desalination,2009,245(1/2/3):485-493
|
CSCD被引
10
次
|
|
|
|
16.
Wang Congmin. Highly efficient and reversible SO_2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption.
Journal of the American Chemical Society,2011,133(31):11916-11919
|
CSCD被引
18
次
|
|
|
|
17.
Wu Weize. Desulfurization of flue gas: SO_2 absorption by an ionic liquid.
Angewandte Chemie International Edition,2004,43(19):2415-2417
|
CSCD被引
47
次
|
|
|
|
18.
Bosmann A. Deep desulfurization of diesel fuel by extraction with ionic liquids.
Chemical Communications,2001,23:2494-2495
|
CSCD被引
60
次
|
|
|
|
19.
Guo Bin. Absorption and oxidation of H_2S in caprolactam tetrabutyl ammonium bromide ionic liquid.
Energy & Fuels,2011,25(1):159-161
|
CSCD被引
9
次
|
|
|
|
20.
Cheng Xuepei. Absorption of vinyl chloride by room temperature ionic liquids.
Clean-Soil, Air, Water,2009,37(3):245-248
|
CSCD被引
1
次
|
|
|
|
|