京津冀城市群县域尺度生态效率评价及空间格局分析
Spatial pattern and evaluation of eco-efficiency in counties of the Beijing-Tianjin-Hebei Urban Agglomeration
查看参考文献32篇
文摘
|
京津冀城市群地区是国家经济发展的战略核心区之一,其经济发展与资源环境关系是近年来地理研究的重点领域。本文以京津冀城市群县域为单元,利用PM2.5、NO2遥感反演等数据,设计资源投入-经济效益-环境影响复合生态效率评价指标体系,构建县域单元生态效率评价模型,并利用非期望产出SBM模型对生态效率进行了评价,运用空间自相关分析方法对生态效率的空间效应与空间关联模式进行了检验与分析。结果显示:①资源投入、经济效益与环境影响格局存在明显时空分异,高值区主要分布在京津唐三市及周边部分县区;②2006、2010、 2014年3个时期京津冀城市群县域单元生态效率均值分别为0.324、0.305、0.347,总体水平较低,并呈现先下降后改善态势,区位、自然本底条件是导致生态效率空间差异的主要原因。③全局Moran's I指数分别为0.2539、 0.3007、0.3088,表明县域单元生态效率存在空间正向集聚趋势;④县域单元生态效率正向集聚程度越来越显著,邻域单元生态效率差距则有所缩减。 |
其他语种文摘
|
Urbanization in China has resulted in an increased consumption of resources, energy, and materials and led to negative environmental effects. Urban agglomeration plays pivotal roles in the China's new urbanization. These factors have motivated the widely discussed topic of urban agglomeration's eco-efficiency. This research developed an index system of eco-efficiency and evaluated the eco-efficiency of counties in the Beijing-Tianjin-Hebei Urban Agglomeration using the modified Topsis model for the spatial pattern of consumption of resources, economic benefit, and environmental pollution outputs. We also quantified ecoefficiency by the undesirable-output SBM model in 2006, 2010, and 2014 using environmental pollution as an undesirable output. Spatial autocorrelation index and local Moran's I index were used to analyze the spatial correlation pattern of eco-efficiency at the county level in the study area. The results show that there exist significant spatiotemporal differences of consumption of resources, economic benefit, and environmental pollution outputs. The Beijing-Tianjin-Hebei area had high values of inputs and outputs in the research period. Eco-efficiency of counties in the Beijing-Tianjin-Hebei Urban Agglomeration was relatively low. Mean values of eco-efficiency were 0.324, 0.305, and 0.347 in 2006, 2010, and 2014. It decreased first and then increased. The reasons for the spatial differences of eco-efficiency are location and natural backgrounds, and low economic benefit and high environmental impact are the main factors that restrict the improvement of eco-efficiency. The global Moran's I index values were 0.2539, 0.3007, and 0.3088, indicating that the impact factors of ecoefficiency were not only related to the economic development level of each county unit, but also associated with the eco-efficiency of adjacent counties. The positive agglomeration effect has been increasingly obvious since 2006, and the gap of eco-efficiency of neighboring counties has reduced. |
来源
|
地理科学进展
,2017,36(1):87-98 【核心库】
|
DOI
|
10.18306/dlkxjz.2017.01.009
|
关键词
|
生态效率
;
改进TOPSIS模型
;
SBM模型
;
空间关联模式
;
县域单元
;
京津冀城市群
|
地址
|
1.
首都师范大学资源环境与旅游学院, 北京, 100048
2.
中国科学院地理科学与资源研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金重大项目
|
文献收藏号
|
CSCD:5905174
|
参考文献 共
32
共2页
|
1.
方创琳. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径.
地理学报,2016,71(4):531-550
|
CSCD被引
188
次
|
|
|
|
2.
关伟. 中国能源生态效率的空间格局与空间效应.
地理学报,2015,70(6):980-992
|
CSCD被引
48
次
|
|
|
|
3.
韩瑞玲. 基于生态效率的辽宁省循环经济分析.
生态学报,2011,31(16):4732-4740
|
CSCD被引
23
次
|
|
|
|
4.
胡彪. 中国生态效率测度与空间差异实证-基于SBM模型与空间自相关性的分析.
干旱区资源与环境,2016,30(6):6-12
|
CSCD被引
12
次
|
|
|
|
5.
李惠娟. 资源型城市的生态效率评价.
资源科学,2010,32(7):1296-1300
|
CSCD被引
15
次
|
|
|
|
6.
陆大道. 京津冀城市群功能定位及协同发展.
地理科学进展,2015,34(3):265-270
|
CSCD被引
84
次
|
|
|
|
7.
马雪莹. 基于熵权-TOPSIS的山区乡镇通达性研究——以重庆市石柱县为例.
地理科学进展,2016,35(9):1144-1154
|
CSCD被引
23
次
|
|
|
|
8.
潘丹. 中国农业生态效率评价方法与实证--基于非期望产出的SBM模型分析.
生态学报,2013,33(12):3837-3845
|
CSCD被引
88
次
|
|
|
|
9.
涂正革. 考虑能源、环境因素的中国工业效率评价:基于SBM模型的省级数据分析.
经济评论,2011(2):55-65
|
CSCD被引
18
次
|
|
|
|
10.
Arabi B. Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist-Luenberger index measurement.
Energy Policy,2014,68(2):132-145
|
CSCD被引
10
次
|
|
|
|
11.
Cerutti A K. Multifunctional ecological footprint analysis for assessing ecoefficiency: A case study of fruit production systems in Northern Italy.
Journal of Cleaner Production,2013,40:108-117
|
CSCD被引
7
次
|
|
|
|
12.
Division D. Eco-efficiency indicators: Measuring resource-use efficiency and the impact of economic activities on the environment.
eSocialSciences,2010
|
CSCD被引
1
次
|
|
|
|
13.
Egilmez G. Transportation related carbon, energy and water footprint analysis of U.S. manufacturing: An eco-efficiency assessment.
Transportation Research Part D: Transport and Environment,2014,32:143-159
|
CSCD被引
10
次
|
|
|
|
14.
Frischknecht R. LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency.
The International Journal of Life Cycle Assessment,2010,15(7):666-671
|
CSCD被引
5
次
|
|
|
|
15.
Geddes J A. Long-term trends worldwide in ambient NO_2 concentrations inferred from satellite observations.
Environmental Health Perspectives,2016,124(3):281-289
|
CSCD被引
9
次
|
|
|
|
16.
Gurauskiene I. Application of material flow analysis to estimate the efficiency of e-waste management systems: The case of Lithuania.
Waste Management & Research,2011,29(7):763-777
|
CSCD被引
1
次
|
|
|
|
17.
Hahn T. Opportunity cost based analysis of corporate eco-efficiency: A methodology and its application to the CO_2-efficiency of German companies.
Journal of Environmental Management,2010,91(10):1997-2007
|
CSCD被引
16
次
|
|
|
|
18.
Huang J H. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China.
Journal of Cleaner Production,2014,67:228-238
|
CSCD被引
30
次
|
|
|
|
19.
Huppes G. A framework for quantified ecoefficiency analysis.
Journal of Industrial Ecology,2005,9(4):25-41
|
CSCD被引
25
次
|
|
|
|
20.
Li D Z. An emergy analysisbased methodology for eco-efficiency evaluation of building manufacturing.
Ecological Indicators,2011,11(5):1419-1425
|
CSCD被引
4
次
|
|
|
|
|