干旱区大尺度土壤盐度信息环境建模-以新疆天山南北中低海拔冲积平原为例
Environmental modeling of large-scale soil salinity information in an arid region: A case study of the low and middle altitude alluvial plain north and south of the Tianshan Mountains, Xinjiang
查看参考文献45篇
文摘
|
区域空间信息有助于决策者针对特定潜在和既定的土壤盐渍化区域制定改良和优化政策,以避免灌区水土资源的不合理配置和干旱区土地生态系统持续性退化。然而现存区域尺度土壤盐度数据以矢量方式留存,多边形内部土壤属性无空间变异性,缺乏实时更新,对当下实际指导作用具有一定的局限性。随着人类活动的加剧,土壤及其结构性退化正加速危害土壤质量和健康。对此,急需更新或升级,用于刻画干旱区生态系统中土壤盐度数据,以辅助制定相关政策,减缓土壤盐渍化的危害。针对此问题,本文基于代表性等级的采样设计方法(Integrative Hierarchical Sampling Strategy, IHSS),获取少量典型样点,结合土壤-环境推理模型(soil land inference model, SoLIM),尝试推理区域尺度土壤盐分含量信息。研究以新疆天山南北中低海拔冲积平原为案例,仅以23个代表性样本,推理陆表(0~10 cm)土壤盐分含量,源自3个典型绿洲94个野外样本的验证数据显示,依据评判标准,预测结果与实际情况较为相符,与线性回归模型相比,具备处理土壤与环境变量之间非线性关系的SoLIM,推理精度更高。所以,研究认为模糊隶属度加权平均的方法(IHSS-SoLIM)可以通过较小的建模点得到更好的预测效果,可作为区域尺度土壤盐度推理的备选方案。 |
其他语种文摘
|
Regional information on the spatial distribution of soil salinity can be used as guidance in avoiding the continued degradation of land and water resources. However, most regional soil salinity maps are produced through a conventional direct-linking method derived from historic observations. Such maps lack spatial details and are limited in describing the evolution of soil salinization in particular instances. In anthropogenic regions, soil change, and soil formation and degradation, have accelerated, jeopardizing soil quality and health. The need for up- to- date soil and environmental data that characterize the physicochemical, biological, and hydrological conditions of arid ecosystems across continents has intensified (e.g. soil salinization in arid land). Digital soil mapping (DSM) and modeling techniques have been widely used in the past few decades. To overcome these limitations, we employed a method that included an integrative hierarchical-sampling strategy (IHSS) and the Soil Land Inference Model (SoLIM) to map soil salinity over a regional area. This case study, the Xinjiang Uygur Autonomous Region of China, demonstrates that the employed method can produce soil salinity maps at a higher level of spatial detail and accuracy. Twenty-three representative points are determined. The results show that: (1) the prediction is accurate in Kuqa Oasis (R~2=0.70, RPD=1.55, RMSE=12.86) and Keriya Oasis (R~2=0.75, RPD=1.66, RMSE=10.92), and performed a little better than in Fukang Oasis (R~2=0.77, RPD=2.01, RMSE=6.32), according to the evaluation criteria. (2) Based on all validation samples from three oases, accuracy estimation shows that the employed method (R~2= 0.74, RPD=1.67, RMSE=11.18) performed better than the multiple linear regression model (R~2=0.60, RPD= 1.47, RMSE=14.45). Finally, this study concludes that the employed method can serve as an alternative model for soil salinity mapping on a large scale. |
来源
|
地理学报
,2017,72(1):64-78 【核心库】
|
DOI
|
10.11821/dlxb201701006
|
关键词
|
土壤盐度
;
土壤-环境推理模型
;
典型样点
;
遥感
;
线性模型
|
地址
|
新疆大学资源与环境科学学院, 绿洲生态教育部重点实验室, 乌鲁木齐, 830046
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
农业基础科学 |
基金
|
新疆维吾尔自治区科技支疆项目
;
新疆自治区重点实验室专项基金项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5902666
|
参考文献 共
45
共3页
|
1.
Grunwald S. Digital soil mapping and modeling at continental scales: Finding solutions for global issues.
Soil Science Society of America Journal,2011,75(4):1201-1213
|
CSCD被引
16
次
|
|
|
|
2.
李建国. 土壤盐渍化研究现状及未来研究热点.
地理学报,2012,67(9):1233-1245
|
CSCD被引
188
次
|
|
|
|
3.
Ghassemi F. Salinisation of land and water resources: Human causes, extent, management and case studies.
Cab International,1995
|
CSCD被引
1
次
|
|
|
|
4.
Abrol I P. Salt-affected soils and their management.
Food and Agriculture Organization of the United Nations,1988
|
CSCD被引
1
次
|
|
|
|
5.
杨琳. 基于土壤-环境关系的更新传统土壤图研究.
土壤学报,2010,47(6):1039-1049
|
CSCD被引
12
次
|
|
|
|
6.
Ding J L. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan- Kuqa oasis, China, using remote sensing and electromagnetic induction instruments.
Geoderma,2014,235/236:316-322
|
CSCD被引
28
次
|
|
|
|
7.
Ilyas N. Monitoring soil salinization in Keriya River Basin, northwestern China using passive reflective and active microwave remote sensing data.
Remote Sensing,2015,7(7):8803-8829
|
CSCD被引
16
次
|
|
|
|
8.
王飞. 基于NDVI-SI特征空间的土壤盐渍化遥感模型.
农业工程学报,2010,26(8):168-173
|
CSCD被引
60
次
|
|
|
|
9.
乔木. 近25 a来塔里木盆地灌区土壤盐渍化时空变化特点改良治理对策.
干旱区地理,2011,34(4):604-613
|
CSCD被引
22
次
|
|
|
|
10.
王芳芳. 基于3S技术的新疆耕地盐渍化状况调查与分析.
干旱区研究,2009,26(3):366-371
|
CSCD被引
16
次
|
|
|
|
11.
Zhu Axing. Construction of membership functions for predictive soil mapping under fuzzy logic.
Geoderma,2010,155(3/4):164-174
|
CSCD被引
23
次
|
|
|
|
12.
Li C F. Carbon stock and its responses to climate change in Central Asia.
Clobal Change Biology,2015,21(5):1951-1967
|
CSCD被引
14
次
|
|
|
|
13.
Cheng W. The oasis expansion and eco-environment change over the last 50 years in Manas River Valley, Xinjiang.
Science in China Series D,2006,49(2):163-175
|
CSCD被引
1
次
|
|
|
|
14.
乔木.
新疆灌区土壤盐渍化及改良模式研究,2008:56
|
CSCD被引
3
次
|
|
|
|
15.
Mcbratney A B. On digital soil mapping.
Geoderma,2003,117(1):3-52
|
CSCD被引
185
次
|
|
|
|
16.
Nurdiana A. Land changes monitoring using MODIS time-series imagery in peat lands areas, Muaro Jambi, Jambi Province, Indonesia.
Procedia Environmental Sciences,2016,33:443-449
|
CSCD被引
1
次
|
|
|
|
17.
Lobell D B. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.
Journal of Environmental Quality,2010,39(1):35-41
|
CSCD被引
17
次
|
|
|
|
18.
Zhu A X. Construction of membership functions for predictive soil mapping under fuzzy logic.
Geoderma,2010,155(3):164-174
|
CSCD被引
23
次
|
|
|
|
19.
Smith M P. The effects of DEM resolution and neighborhood size on digital soil survey.
Geoderma,2006,137(1):58-69
|
CSCD被引
22
次
|
|
|
|
20.
Martz L W. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models.
Hydrological Processes,1998,12(6):843-855
|
CSCD被引
25
次
|
|
|
|
|