太平洋板块俯冲作用在东北亚大陆边缘的地质记录述评
Geological Records of the Pacific Plate Subduction in the Northeast Asian Continental Margin: An Overview
查看参考文献60篇
文摘
|
古太平洋起源于泛大洋,为晚古生代-早中生代环绕泛大陆的全球性大洋。随着古特提斯洋盆的关闭和泛大陆的裂解,逐渐形成了古太平洋板块,以及大西洋、北冰洋和印度洋板块等等。本文综合了近年来这方面的研究进展,提出古太平洋板块(或伊佐柰琦板块)向东北亚大陆边缘的俯冲作用始于早侏罗世,俯冲带逐渐由西向东迁移,其中夹杂着微陆块或地体,构成了多岛洋的构造格局。 |
其他语种文摘
|
The Paleo-Pacific Ocean was originated from the Panthalassa,which was a vast global ocean surrounding the Pangea Supercontinent. With the breakup of the Pangea and the closure of the Paleo-Tethyan Ocean,the Paleo-Pacific, Atlantic,Arctic and Indian Oceanic plates were in turn formed. About 190 Ma,the Pacific Plate was initially generated at the junction of the oceanic rift among the Izanagi,Farallon and Pheonix plates. Although most geologists considered a coherent genetic relationship between Meso-Cenozoic tectonic evolution of NE Asian continental margin and subduction of the Pacific Plate,there still exist some key problems. The main issues include: (1) the formation,motion trait and evolution paths of the Pacific Plate,especially the Izanagi Plate which subducted beneath the NE Asian continental margin at least since early Jurassic; (2) the beginning time of the Pacific Plate subduction; (3) the identification of subduction-related magmatism; and(4) physical conditions of subduction processes. Based on the recent research progress of the above issues,this paper synthesizes that the subduction of the Paleo-Pacific Plate(or Izanagi Plate) beneath the NE Asian continent started in the early Jurassic. The subduction zone was gradually migrated eastward and constituted anarchipelagic oceanic framework with the involvement of old microblocks or foreign massifs. |
来源
|
矿物岩石地球化学通报
,2016,35(6):1082-1089 【核心库】
|
DOI
|
10.3969/j.issn.l007-2802.2016.06.002
|
关键词
|
太平洋板块
;
俯冲作用
;
东北亚大陆边缘
;
地质记录
|
地址
|
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:5901614
|
参考文献 共
60
共3页
|
1.
Bedard J H. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids.
Chemical Geology,1994,118(1/4):143-153
|
CSCD被引
9
次
|
|
|
|
2.
Bedard J H. Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: A trace elementmodelling approach.
Contributions to Mineralogy and Petrology,2001,141(6):747-771
|
CSCD被引
12
次
|
|
|
|
3.
Bunge H P. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab.
Nature,2000,405(6784):337-340
|
CSCD被引
3
次
|
|
|
|
4.
Cawood P A. Linking accretionary orogenesis with supercontinent assembly.
Earth-Science Reviews,2007,82(3/4):217-256
|
CSCD被引
98
次
|
|
|
|
5.
Collins W J. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data.
Nature Geoscience,2011,4(5):333-337
|
CSCD被引
53
次
|
|
|
|
6.
Engebretson D C. Relative motions between oceanic and continental plates in the pacific basin.
Geological Society of America,1985,206:1-60
|
CSCD被引
26
次
|
|
|
|
7.
Fan W M. Late Mesozoic mafic magmatism from the North China Block: Constraints on chemical and isotopic heterogeneity of the subcontinental lithospheric mantle.
Mesozoic sub-continental lithospheric thinning under eastern Asia. Geological Society,London,Special Publication, 280,2007:77-100
|
CSCD被引
1
次
|
|
|
|
8.
Fujisaki W. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia.
Journal of Asian Earth Sciences,2014,88:62-73
|
CSCD被引
5
次
|
|
|
|
9.
Gao X F. Geochemical and Sr-Nd-Pb isotopic evidence for ancient lower continental crust beneath the Xi Ujimqin area of NE China.
Lithos,2016,252/253:173-184
|
CSCD被引
8
次
|
|
|
|
10.
Guo F. Generation of Palaeocene adakitic andesites by magma mixing,Yanji Area,NE China.
Journal of Petrology,2007,48(4):661-692
|
CSCD被引
134
次
|
|
|
|
11.
Guo F. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth.
Lithos,2010,120(3/4):563-578
|
CSCD被引
42
次
|
|
|
|
12.
Guo F. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex.
Lithos,2015,224/225:46-60
|
CSCD被引
57
次
|
|
|
|
13.
Guo F. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region,NE China.
Lithos,2016,261:195-215
|
CSCD被引
17
次
|
|
|
|
14.
Gutscher M A. Can slab melting be caused by flat subduction?.
Geology,2000,28(6):535-538
|
CSCD被引
128
次
|
|
|
|
15.
Han Y G. Tarim and North China cratons linked to northern Gondwana through switching accretionary tectonics and collisional orogenesis.
Geology,2016,44(2):95-98
|
CSCD被引
21
次
|
|
|
|
16.
Hirose K. Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas.
Earth and Planetary Science Letters,1995,133(3/4):463-473
|
CSCD被引
49
次
|
|
|
|
17.
Jahn B M. Accretionary orogen and evolution of the Japanese Islands: Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan.
American Journal of Science,2010,310(10):1210-1249
|
CSCD被引
18
次
|
|
|
|
18.
Jahn B M. Emplacement ages,geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt,Russian Far East: Crustal growth and regional tectonic evolution.
Journal of Asian Earth Sciences,2015,111:872-918
|
CSCD被引
25
次
|
|
|
|
19.
Kemp A I S. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides,eastern Australia.
Earth and Planetary Science Letters,2009,284(3/4):455-466
|
CSCD被引
35
次
|
|
|
|
20.
Kimura G. Oblique subduction and collision: Forearc tectonics of the Kuril Arc.
Geology,1986,14(5):404-407
|
CSCD被引
5
次
|
|
|
|
|