超声波实时测量技术在固体火箭发动机中的应用
Application of Ultrasonic Real-time Measurement Technology in Solid Rocket Motor
查看参考文献14篇
文摘
|
利用超声波对固体推进剂燃速进行实时测量是先进的燃速测量方法之一。针对超声波技术在固体火箭发动机试车中的应用,对典型固体火箭发动机材料进行测试研究,获得了发动机材料的超声波信号特征。将超声波探头直接安装在发动机壳体外侧部位,测量了固体推进剂在常压燃烧时的厚度变化。针对动态燃速测试,提出了超声波数据处理方法,对固体装药在常压燃烧下的回波进行处理,获得了装药的厚度变化过程和燃速,并分析了燃面附近温度分布对燃速测量的影响。结果表明:用超声波测量金属壳体固体发动机的燃速必须在壳体上开窗使超声波透过壳体和绝热层界面,而对复合材料壳体发动机可将超声波探头直接安装在壳体外侧;燃烧引起的装药表面温度变化对测量的影响可以忽略;该数据处理方法可以有效获得装药厚度变化。 |
其他语种文摘
|
Ultrasonic measurement of burning rate is an advanced technique. For application of ultrasonic measurement in solid rocket motor test, some typical materials used in solid rocket motor (SRM) are measured by ultrasonic technique, and their ultrasonic signal signatures were obtained. The real-time thickness variation of solid propellant at ordinary pressure is measured by an ultrasonic transducer mounted on the outside of the motor shell. A data processing method is proposed to manipulate the echo wave for real-time measurement of burning rate. The proposed method was successfully used in a hot fire test in which the propellant burns at ordinary pressure. The variation in thickness of propellant and its burning rate at ordinary pressure was obtained. The influence of temperature distribution near burning surface on burning rate test is analyzed. The results show that for motor with metal shell, a window must be made on the metal shell to let enough ultrasonic wave energy penetrate the interface between shell and isolator, and for composite shell motor the probe can be mounted outside the shell directly. The influence of temperature variation near burning face caused by combustion on measurement is negligible. The proposed data processing method can be used effectively to obtain the variation of grain thickness. |
来源
|
兵工学报
,2016,37(11):1969-1975 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2016.11.001
|
关键词
|
兵器科学与技术
;
固体火箭发动机
;
燃速
;
超声波
;
数据处理
;
温度
|
地址
|
1.
大连理工大学航空航天学院, 工业装备结构分析国家重点实验室, 辽宁, 大连, 116024
2.
西安航天动力技术研究所, 陕西, 西安, 710025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
一般工业技术 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:5877413
|
参考文献 共
14
共1页
|
1.
Cauty F. Ultrasonic measurements of the uncured solid propellants burning rate.
Proceedings of the 21th International Congress of ICT,1990:110-114
|
CSCD被引
1
次
|
|
|
|
2.
Frederick R J. Review of ultrasonic technique for steady state burning rate measurements.
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2000
|
CSCD被引
2
次
|
|
|
|
3.
Demarais J C I. Determination of solid propellant burning rate sensitivity to the initial temperature by the ultrasonic method.
International Journal of Energetic Materials and Chemical Propulsion,1994,3(1/6):642-653
|
CSCD被引
1
次
|
|
|
|
4.
Murphy J J. Ultrasound measurements of solid propellant burning rates: theory and application.
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1998
|
CSCD被引
1
次
|
|
|
|
5.
Sinclair A N. Ultrasonic evaluation of weak liner/propellant bonding in a rocket motor.
16th World Conference on NDT,2004
|
CSCD被引
1
次
|
|
|
|
6.
McLean C H. Green propellant infusion mission program overview, status, and flight operations.
51st AIAA/SAE/ASEE Joint Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
7.
Redden J J. SLS booster development.
51st AIAA/SAE/ASEE Joint Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
8.
Anthoine J. Variable fuel grains Burn velocities to reduce solid-rocket-motor pressure oscillations.
Journal of Propulsion and Power,2015,31(1):342-351
|
CSCD被引
1
次
|
|
|
|
9.
Jones D A. An advanced digital cross correlation method for solid propellant burning rate determination.
51st AIAA/SAE/ASEE Joint Propulsion Conference,2015
|
CSCD被引
1
次
|
|
|
|
10.
张劲民. 超声波燃速测试技术在固体推进剂研制中的应用.
火炸药学报,2006,29(3):9-12
|
CSCD被引
5
次
|
|
|
|
11.
孙得川. 超声波法测量燃速初探.
固体火箭技术,2007,30(4):362-364
|
CSCD被引
2
次
|
|
|
|
12.
孙得川. 固液火箭发动机中燃料热解速率的测量与分析.
推进技术,2010,31(1):74-77
|
CSCD被引
3
次
|
|
|
|
13.
孙得川. 固体推进剂燃速的超声波测量.
西安工业大学学报,2011,31(1):40-43,52
|
CSCD被引
3
次
|
|
|
|
14.
郑晖.
超声检测.(第2版),2008
|
CSCD被引
1
次
|
|
|
|
|