Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field
Beta C钛合金在β相区的热变形行为及组织演化
查看参考文献36篇
文摘
|
The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression tests on a Gleeble-3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained and a processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stress increases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activation energy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit a dynamic recrystallization domain in the temperature range of 900-1000 °C and strain rate range of 0.1-1 s~(-1). An instability region exists when the strain rate is higher than 1.7 s~(-1). The microstructure of beta C titanium alloy can be optimized by proper heat treatments after the deformation in the dynamic recrystallization domain. |
其他语种文摘
|
利用Gleeble-3800热模拟试验机对beta C钛合金进行等温压缩试验,研究其在β相区的热变形行为。得到了描述热变形行为的本构方程,获得了真应变为0.7时的加工图。采用光学显微镜、扫描电子显微镜和电子背散射技术对变形显微组织进行表征。结果表明:流变应力随着应变速率加快而增大,随着试验温度的升高而减小。计算得到的表观激活能为167 kJ/mol,接近β钛的自扩散激活能。加工图和显微组织观察表明在温度为900~1000 °C和变形速率为0.1~1 s~(-1)的区间存在一个动态再结晶区。加工图显示,当变形速率大于1.7 s~(-1)时,beta C钛合金发生不稳定变形。Beta C钛合金在动态再结晶区变形后,经合适的热处理,显微组织可以被优化。 |
来源
|
Transactions of Nonferrous Metals Society of China
,2016,26(11):2874-2882 【核心库】
|
DOI
|
10.1016/S1003-6326(16)64416-3
|
关键词
|
titanium alloy
;
hot deformation
;
dynamic recrystallization
;
processing map
|
地址
|
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:5874615
|
参考文献 共
36
共2页
|
1.
Schmidt P. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38-644.
Metallurgical and Materials Transactions A,2011,42(9):2652-2667
|
CSCD被引
15
次
|
|
|
|
2.
El-Chaikh A. Fatigue properties of duplex-aged Ti 38-644 metastable beta titanium alloy.
Procedia Engineering,2010,2(1):1973-1982
|
CSCD被引
1
次
|
|
|
|
3.
Yamashita Y. Manufacturing technology and application of titanium alloy wire rod to deep-sea cable.
Nippon Steel Technical Report,1994,62:52-56
|
CSCD被引
1
次
|
|
|
|
4.
Yu K O. Single-melt beta C for spring and fastener applications.
Journal of Materials Engineering and Performance,2005,14(6):697-702
|
CSCD被引
3
次
|
|
|
|
5.
Nyakana S L. Quick reference guide for β titanium alloys in the oos.
Journal of Materials Engineering and Performance,2005,14(6):799-811
|
CSCD被引
46
次
|
|
|
|
6.
Somerday B P. Effect of strength on environment-assisted cracking of Ti-8V-6Cr-4Mo-4Zr-3Al in aqueous NaCl. Part 1: Age hardening vs. work hardening.
Materials Science and Engineering A,1998,254(1):166-178
|
CSCD被引
1
次
|
|
|
|
7.
Gaudett M A. Part I-The effects of pre-dissolved hydrogen on cleavage and grain boundary fracture initiation in metastable beta Ti-3Al-8V-6Cr-4Mo-4Zr.
Metallurgical and Materials Transactions A,1999,30(1):65-79
|
CSCD被引
1
次
|
|
|
|
8.
Rhodes C G. The influence of microstructure on mechanical properties in Ti-3AI-8V-6Cr-4Mo-4Zr (Beta-C).
Metallurgical Transactions A,1977,8(11):1749-1761
|
CSCD被引
6
次
|
|
|
|
9.
Choe B H. The ordering behavior of supersaturated metastable phases in β-Ti alloys.
Metals and Materials International,2001,7(6):551-556
|
CSCD被引
1
次
|
|
|
|
10.
Salam A. Superplasticity and associated activation energy in Ti-3Al-8V-6Cr-4Mo-4Zr alloy.
Journal of Materials Science,2005,40(20):5475-5482
|
CSCD被引
4
次
|
|
|
|
11.
-Ukaszek-So-Ek A. The analysis of the hot deformation behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness.
Materials & Design,2014,65:165-173
|
CSCD被引
1
次
|
|
|
|
12.
Prasad Y V R K. Modelling of dynamic materials behavior in hot deformation: Forging of Ti-6242.
Metallurgical Transactions A,1984,15:1883-1892
|
CSCD被引
410
次
|
|
|
|
13.
Prasad Y V R K.
Hot working guide: A compendium of processing maps 2~(nd) ed,2015:2-11
|
CSCD被引
1
次
|
|
|
|
14.
Xu Xin. Effect of strain on hot deformation behavior and microstructure of TB9 titanium alloy.
The Chinese Journal of Nonferrous Metals. (in Chinese),2013,23(S):s566-s570
|
CSCD被引
1
次
|
|
|
|
15.
Weiss I. Thermomechanical processing of beta titanium alloys-An overview.
Materials Science and Engineering A,1998,243(1):46-65
|
CSCD被引
120
次
|
|
|
|
16.
Luo Jiao. Deformation behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with two initial microstructures during hot working.
Transactions of Nonferrous Metals Society of China,2016,26(2):414-422
|
CSCD被引
10
次
|
|
|
|
17.
Srinivasan M. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map.
Materials & Design,2013,47(9):449-455
|
CSCD被引
8
次
|
|
|
|
18.
Gall S. Hot working behavior of AZ31 and ME21 magnesium alloys.
Journal of Materials Science,2013,48(1):473-480
|
CSCD被引
6
次
|
|
|
|
19.
Li Juqiang. Characterization of hot deformation behavior of extruded ZK60 magnesium alloy using 3D processing maps.
Materials & Design,2014,56:889-897
|
CSCD被引
15
次
|
|
|
|
20.
Lu Yanling. Hot deformation behavior of Hastelly C276 superalloy.
Transactions of Nonferrous Metals Society of China,2012,22(S1):s84-s88
|
CSCD被引
9
次
|
|
|
|
|