水力发电的能值转换率计算方法
Transformity Calculation Method of Hydropower
查看参考文献20篇
文摘
|
能值转换率是能值计算分析的关键参数。论文根据资源产品的特征和属性,在分析水电工程建设主要投入产出的基础上,提出了水力发电的能值转换率计算方法。案例研究表明: 1)中国水力发电的能值转换率总体呈减小的趋势,由2003年的2.41×10~(12) seJ/kWh减小到2014年的5.69×10~(11) seJ/kWh,但于2011年后逐步趋于稳定;2)中国水力发电的能值转换率,与美国水力发电的能值转换率相当,高于利用太阳能发电技术输出的电力的能值转换率,低于热电厂输出的电力的能值转换率;3)影响中国水力发电能值转换率的主要因素是水库淹没及水利设施占用的土地,以及土石方等不可更新资源的投入。研究提出了减小水力发电能值转换率的4个有效途径,并得到了水力发电的能值转换率,可为水电工程生态效应定量分析提供基础数据。 |
其他语种文摘
|
Emergy analysis theory is a new quantitative analysis method to assess ecological effects of hydropower projects. In order to evaluate unified and quantitative ecological effects of hydropower project with emergy analysis, hydropower transformiy must be calculated firstly. Transformity is the key parameter for emergy calculation analysis. Transformity configuration system of hydropower project is established, its input being the hydropower project construction, and its output being the positive and negative effects on social, economic and ecological environment. According to the characteristics and attributes of resources and products, the transformity calculation method of hydropower is developed based on the inputoutput analysis of hydropower projects. The method can calculate the hydropower transformity not only for all hydropower projects of a country, but also for a specific hydropower project. Accurately accounting the inputs and outputs of the hydropower project construction is the basic work to calculate the hydropower transformity. The quality of the account will influence the accuracy of the hydropower transformity calculation results. The studies are shown as follows. Firstly, the hydropower transformiy of China showed a decreasing trend, from 2.41×10~(12) seJ/kWh in 2003 to 5.69×10~(11) seJ/kWh in 2014. But after 2011, it gradually stabilized. This means that the effectiveness of hydropower project construction was improved, and the effects of hydropower development on social, economic and ecological environment became stable. But it will stabilize while the technology and management level of the production is relatively stable. Secondly, Chinese hydropower transformity is comparable to the hydropower transformity in the US, higher than the transformity of solar power generation and lower than the transformity of thermal electric power. This shows that the transformity for the same product is different in countries with different production and management levels. At the same time, the transformity for the same product may be also different due to the different production modes. The hydropower transformity obtained in this article is based on all Chinese hydropower projects, and it reflects the overall situation of hydropower projects construction in China. The system boundary should be determined reasonably when a single hydropower project is used as the research object. Thirdly, the main factors affecting Chinese hydropower tansformity are the reservoir inundation, land occupied by water conservancy facilities, and nonrenewable resources input such as earthwork and stonework. At last, four effective ways are put forward to decrease the hydropower transformity. They are rational management to reduce losses caused by floods and droughts, ecological migration to reduce the impact of immigration on society, scientific planning to reduce reservoir inundation, optimizing engineering design and construction to reduce consumption in kind. This study can provide the basis data for the ecological effect quantitative analysis of hydropower projects. |
来源
|
自然资源学报
,2016,31(11):1958-1968 【核心库】
|
DOI
|
10.11849/zrzyxb.20160046
|
关键词
|
能值分析理论
;
水力发电
;
能值转换率
|
地址
|
嘉兴学院建筑工程学院, 嘉兴, 314001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
电工技术;环境保护管理 |
基金
|
国家教育部人文社会科学研究项目
;
浙江省教育厅项目
|
文献收藏号
|
CSCD:5859258
|
参考文献 共
20
共1页
|
1.
Jia J S. Hydropower.
Handbook of Climate Change Mitigation, Part 5,2012:1355-1401
|
CSCD被引
1
次
|
|
|
|
2.
Fu K D. Analysis and prediction of sediment trapping efficiencies of the reservoirs in the mainstream of the Lancang River.
Chinese Science Bulletin,2007,52(2):134-140
|
CSCD被引
7
次
|
|
|
|
3.
Qiu J. Trouble on the Yangtze.
Science,2012,336:288-291
|
CSCD被引
5
次
|
|
|
|
4.
陆佑楣. 中国水资源开发要调整步伐有序推进.
中国三峡,2009(5):5-11
|
CSCD被引
2
次
|
|
|
|
5.
Wu J H. Emergy footprint evaluation of hydropower projects.
Science China: Technological Sciences,2013,56(9):2336-2342
|
CSCD被引
5
次
|
|
|
|
6.
Brown M T. Embodied energy analysis and emergy analysis: A comparative view.
Ecological Economics,1996,19:219-235
|
CSCD被引
62
次
|
|
|
|
7.
曾容. 基于能值分析的大坝生态效应评价------以尼尔基大坝为例.
环境科学学报,2010,30(4):890-896
|
CSCD被引
6
次
|
|
|
|
8.
Odum H T.
Environmental Accounting: Emergy and Environmental Decision Making,1996
|
CSCD被引
129
次
|
|
|
|
9.
Odum H T. Self-organization, transformity and information.
Science,1988,242:1132-1139
|
CSCD被引
194
次
|
|
|
|
10.
Paoli C. Solar power: An approach to transformity evaluation.
Ecological Engineering,2008,34:191-206
|
CSCD被引
5
次
|
|
|
|
11.
中华人民共和国水利部.
全国水利发展统计公报2014,2015
|
CSCD被引
1
次
|
|
|
|
12.
中华人民共和国水利部.
中国水资源公报2014
|
CSCD被引
1
次
|
|
|
|
13.
国家防汛抗旱总指挥部.
中国水旱灾害公报2014,2015
|
CSCD被引
1
次
|
|
|
|
14.
中华人民共和国水利部.
中国河流泥沙公报2014,2015
|
CSCD被引
2
次
|
|
|
|
15.
中国国家统计局.
中国统计年鉴2015,2015
|
CSCD被引
4
次
|
|
|
|
16.
袁晶. 三峡水库蓄水运用以来库区泥沙淤积特性研究.
水力发电学报,2013,32(2):139-145,175
|
CSCD被引
15
次
|
|
|
|
17.
Kang D. Emergy evaluation perspectives of a multi-purpose dam proposal in Korea.
Journal of Environmental Management,2002,66:293-306
|
CSCD被引
13
次
|
|
|
|
18.
贺成龙.
水电工程的能值足迹模型研究及其应用,2013
|
CSCD被引
3
次
|
|
|
|
19.
蓝盛芳.
生态经济系统能值分析,2002
|
CSCD被引
298
次
|
|
|
|
20.
Bakshi B R. A thermo dynamic framework for ecologically conscious process systems engineering.
Computers and Chemical Engineering,2000,24:1767-1773
|
CSCD被引
16
次
|
|
|
|
|