隔转鸭舵式弹道修正弹双旋通道参数辨识
Parameter Estimation of Axial Dual-spin System in a Trajectory Correction Projectile with Decoupled Canards
查看参考文献14篇
文摘
|
双旋弹概念为旋转稳定榴弹的智能化改造提供了新思路,解耦后前后级之间通过执行机构进行控制。为实现对控制内回路的高效设计和分析,建立双旋通道的动力学模型。该模型以准静态气动力和改进形式的LuGre摩擦之间的匹配关系预测鸭舵的运动。通过瞬态数值计算和动态风洞试验获取气动力和摩擦的时域数据,利用最小二乘方法对模型的参数进行估计。研究结果表明:鸭舵的侧向力和滚转力矩分别受到相位角和滚转速率的影响,准静态气动力的估计精度在4×10~(-3)以内;前后级之间的摩擦是轴向力和相对转速的函数,改进的LuGre模型对摩擦的估计能够满足工程需求。飞行试验中双旋参数的测试结果验证了双旋模型在全弹道过程中对鸭舵运动预测的可行性,为双旋修正弹的工况预测和控制系统设计提供了分析方法。 |
其他语种文摘
|
The concept of dual-spinning becomes a new approach to upgrade a conventional spin-stabilized projectile, wherein an actuator is used to control the phase of forward canards. To design and analyze the inner control channel efficiently, a dual-spin ordinary differential equation, including a quasi-steady aerodynamic model and an optimized LuGre friction model, is established. All aerodynamic and kinematic data in time-domain, as input in least square estimation, is obtained in transient numerical model and dynamic wind tunnel test. The results indicate that the side force and roll moment supplied by canards are affected by phase angle and roll rate, and the estimated accuracy of quasi-steady aerodynamics is lower than 4×10~(-3). The friction between forward and aft parts is a function of axial pressure and relative roll rate, which can be estimated by the optimized LuGre model. The feasibility of using the dual-spin model to predict the canard movement is validated by measurement in a flight test. The proposed approach promotes the pace of engineering application of dual-spin projectiles. |
来源
|
兵工学报
,2016,37(10):1812-1819 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2016.10.007
|
关键词
|
兵器科学与技术
;
弹道修正
;
双旋弹
;
外弹道
;
参数辨识
|
地址
|
南京理工大学, 智能弹药技术国防重点学科实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5859078
|
参考文献 共
14
共1页
|
1.
Bybee T. Precision guidance kit.
45th Annual NDIA Gun and Missile Systems Conference,2010
|
CSCD被引
5
次
|
|
|
|
2.
郑斌.
世界兵器发展年度报告,2012
|
CSCD被引
4
次
|
|
|
|
3.
程杰. 隔转鸭舵式弹道修正弹电磁执行机构工况研究.
兵工学报,2014,35(12):2010-2015
|
CSCD被引
8
次
|
|
|
|
4.
Regan F. Aeroballistics of a terminally corrected spinning projectile.
Journal of Spacecraft and Rockets,1975,12(12):733-738
|
CSCD被引
15
次
|
|
|
|
5.
Jermey C.
Wind tunnel of a spinning 105 mm artillery shell model with control surfaces,1979
|
CSCD被引
4
次
|
|
|
|
6.
Costello M F. Linear theory of a dual-spin projectile at atmospheric flight.
Journal of Guidance, Control, and Dynamics,2000,23(5):789-797
|
CSCD被引
43
次
|
|
|
|
7.
纪秀玲. 可旋转鸭舵对旋转弹丸纵向气动特性的影响.
北京理工大学学报,2010,31(3):265-268
|
CSCD被引
8
次
|
|
|
|
8.
程杰. 次口径非对称鸭舵对弹道修正弹气动特性的影响.
北京理工大学学报,2015,35(2):133-138
|
CSCD被引
7
次
|
|
|
|
9.
Je S E. A study on the aerodynamic characteristics for a spin-stabilized projectile with PGK.
26th International Symposium on Ballistics,2011
|
CSCD被引
2
次
|
|
|
|
10.
Sahu J. Development and application of multidisciplinary coupled computational techniques for projectile aerodynamics.
7th International Conference on Computational Fluid Dynamics,2012
|
CSCD被引
3
次
|
|
|
|
11.
王志刚. 双旋制导火箭弹动力学建模.
兵工学报,2013,34(7):910-915
|
CSCD被引
10
次
|
|
|
|
12.
程杰. 隔转鸭舵式弹道修正弹气动力工程模型与辨识.
兵工学报,2014,35(10):1542-1548
|
CSCD被引
14
次
|
|
|
|
13.
Da Ronch A. Computation of dynamic derivatives using CFD.
28th AIAA Applied Aerodynamics Conference,2010
|
CSCD被引
2
次
|
|
|
|
14.
Pattinson J. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification.
Journal of Aircraft,2013,50(2):551-566
|
CSCD被引
10
次
|
|
|
|
|