帮助 关于我们

返回检索结果

SWH双源蒸散模型模拟效果验证及不确定性分析
Evaluation and uncertainty analysis of a two-source evapotranspiration model

查看参考文献19篇

吴戈男 1   胡中民 1 *   李胜功 1   郑涵 1   朱先进 1   孙晓敏 1   于贵瑞 1   李景保 2  
文摘 SWH模型是在经典Shuttleworth-Wallace双源蒸散模型的基础上发展起来的蒸散模型。过去的研究结果表明在站点尺度上SWH模型表现出较高模拟精度,但有关模型对主要参数及驱动变量的敏感性以及模型模拟的不确定性来源等缺乏深入理解与认识。本文通过与51个陆地生态系统站点多年的蒸散观测数据对比,在季尺度、年尺度上验证了全国范围内SWH模型的模拟效果,并分析了关键参数和驱动变量对模型不确定性的贡献大小。结果表明:SWH模型在区域尺度上取得了较好的模拟效果,模拟蒸散与实测值R~2均在0.75以上。模型各参数中,冠层导度估算涉及的两个参数对蒸散模拟不确定性影响较大;驱动数据中,归一化植被指数对蒸散模拟不确定性影响较大。尽管部分数据(如降水)因插补存在较大的误差,但总体上气候驱动数据对蒸散模拟的不确定性的贡献仍低于NDVI。
其他语种文摘 Evapotranspiration (ET) is one of the core processes of water cycle in ecosystem and ET modeling is a hotspot and frontier in the field of the global climate changes. It is therefore important to provide spatiotemporal information of ET across diverse ecosystems in order to predict the response of ecosystem carbon and water cycles to changes in global climate and land use. The SWH model incorporates the Ball-Berry stomatal conductance model and a light use efficiency- based gross primary productivity (GPP) model into the Shuttleworth-Wallace model, which can simulate both ET and GPP. The newly developed SWH model presents a satisfactory prediction ability of simulating ET in a forest and a grassland ecosystem, respectively. However, the SWH model still lacks comprehensive evaluation and uncertainty analysis at regional scale. In this study, we (1) tested the model's performances on estimating ET and GPP at seasonal and annual time scales; (2) quantified the uncertainties of the model parameters and driving variables, including Normalized Difference Vegetation Index, NDVI and meteorological data; (3) quantified the sensitivity of model outputs to the parameters and driving variables; (4) quantified and separated the uncertainties of ET simulation from the parameters and driving variables. Results showed that the SWH model performed well for ET simulation at regional scale as indicated by high coefficient of determination (R~2 = 0.75) of linear regression of modeled against measured ET. Among the key parameters in the SWH model, two parameters related to estimating canopy stomatal conductance (g0 and a1) make great contribution to the model uncertainty. Among the forcing variables, NDVI is most critical in estimating GPP, which contributes much to uncertainty in ET simulation. In comparison, the climatic forcing variables contributes less to uncertainty in ET simulation owing to the high accuracy of the climate data (such as radiation and air temperature) or model's low sensitivities to some variables (such as precipitation).
来源 地理学报 ,2016,71(11):1886-1897 【核心库】
DOI 10.11821/dlxb201611002
关键词 SWH双源蒸散模型 ; Shuttleworth-Wallace模型 ; 蒸散模拟 ; 不确定性分析
地址

1. 中国科学院地理科学与资源研究所, 中国科学院生态系统观测与模拟重点实验室, 北京, 100101  

2. 湖南师范大学资源与环境科学学院, 长沙, 410081

语种 中文
文献类型 研究性论文
ISSN 0375-5444
学科 大气科学(气象学)
基金 国家自然科学基金项目 ;  中国科学院青年创新促进会项目 ;  中国科学院地理科学与资源研究所青年人才项目
文献收藏号 CSCD:5858859

参考文献 共 19 共1页

1.  Yang Y. Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophysical Research Letters,2013,40(12):3026-3030 CSCD被引 2    
2.  Oki T. Global hydrological cycles and world water resources. Science,2006,313(5790):1068-1072 CSCD被引 233    
3.  Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resources Research,1993,29(5):1379-1392 CSCD被引 32    
4.  Zhang B. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an and desert region of Northwest China. Agricultural and Forest Meteorology,2008,148(10):1629-1640 CSCD被引 13    
5.  Ortega-Farias S. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agricultural and Forest Meteorology,2010,150(2):276-286 CSCD被引 17    
6.  邴龙飞. 近30年来中国陆地蒸散量和土壤水分变化特征分析. 地球信息科学学报,2012,14(1):1-13 CSCD被引 18    
7.  Kato Tomomichi. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. AgriculturalWater Management,2004,65:173-191 CSCD被引 34    
8.  Brisson N. Parameterization of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop model. Ecology Modeling,1998,107:159-169 CSCD被引 18    
9.  Zhang L. Comparison of four light use efficiency models for estimating terrestrial gross primary production. Ecological Modeling,2015,300:30-39 CSCD被引 2    
10.  Hu Z. Modeling evapotranspiration by combining a two-source model, a leaf stomatal model, and a light-use efficiency model. Journal of Hydrology,2013,501(25):186-192 CSCD被引 2    
11.  Hu Z. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural and Forest Meteorology,2009,149:1410-1420 CSCD被引 18    
12.  Zhang L. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Frontiers of Earth Science,2014,8(4):599-609 CSCD被引 3    
13.  Shuttleworth W J. Evaporation from sparse crops: An energy combination theory. Quarterly Journal of the Royal Meteorological Society,1985,111:839-855 CSCD被引 169    
14.  Yu G. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology,2006,137(3):125-137 CSCD被引 7    
15.  Yu G. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology,2013,19(3):798-810 CSCD被引 4    
16.  Zhang L. Uncertainty analysis of modeled carbon fluxes for a broad-leaved Korean pine mixed forest using a process-based ecosystem model. Journal of Forest Research,2012,17:268-282 CSCD被引 10    
17.  Lunetta R S. Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA. Remote Sensing of Environment,2002,82(2):258-270 CSCD被引 3    
18.  Cleugh H A. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment,2007,106(3):285-304 CSCD被引 55    
19.  Mu Q. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment,2007,111(4):519-536 CSCD被引 58    
引证文献 4

1 崔俊杰 新疆地区遥感、融合和陆面模式模拟的蒸散产品的不确定性分析 干旱区研究,2018,35(3):597-605
CSCD被引 3

2 吴林 药物和个人护理用品对地下水污染的风险评价 水文地质工程地质,2023,50(1):189-196
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号