帮助 关于我们

返回检索结果

东海大桥风电场短期风速序列特性及其预报
Characteristics and forecast of short-term wind speed series in the Donghai Bridge wind farm

查看参考文献21篇

文摘 风能作为一种重要的可再生能源能源,能够减少环境污染,缓解能源短缺.为减轻风电并网所带来的不利影响,降低供电系统的运行成本,精确的短期风速预报则显得十分必要.本文基于对东海大桥风电场实测数据的分析,指出其短期风速序列具有波动集群效应与非对称效应,而波动反馈效应并不显著.并进而从物理角度对产生这一现象可能的原因进行了详细阐述.此外,为选取适用于东海大桥风电场的预报模型,我们以平均绝对误差(MAE)、平均绝对百分误差(MAPE)以及均方根误差(RMSE)这三个误差指标作为判别标准,定量对比了五个模型的预报精度.结果表明,无论是单步预报还是多步预报,ARMA-EGARCH模型与ARMA-EGARCH-M模型的预报能力十分接近,均优于其他模型,且这两个模型随着提前预报步数的增加,误差增长率较低.
其他语种文摘 As a sort of worldwide renewable energy, wind energy can reduce environmental pollution and relieve the energy shortage. In order to reduce the adverse effect with the integration of wind energy into electricity grids and the operating cost of power supply system, it is becoming increasingly significant to acquire accurate short-term wind speed forecasts. In this paper, based on the analysis of the measured wind speed data in the Donghai Bridge wind farm, we suggest that the short-term wind speed series has volatility clustering effect and asymmetric effect, and the volatility feed-back effect is not significant. And then the possible causes for this phenomenon are elucidated in detail from the viewpoint of physics. In addition, in order to select the forecast model which is appropriate to the Donghai Bridge wind farm, we use these indexes of error: mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) as the criterion, and compare the prediction accuracy of the five models by quantitative analysis. The results show that ARMA-EGARCH model and ARMA-EGARCH-M model are very close to each other in both single-step and multi-step forecasting, and they are superior to other models. What’s more, with the increase of the number of advance forecasting steps, error growth rate of these two models is low.
来源 中国科学. 物理学 , 力学, 天文学,2016,46(12):124713-1-124713-10 【核心库】
DOI 10.1360/SSPMA2016-00407
关键词 海上风电场 ; 短期风速预报 ; 时间序列分析 ; 波动集群效应 ; 波动反馈效应 ; 非对称效应
地址

中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1674-7275
学科 能源与动力工程;电工技术
基金 国家自然科学基金 ;  国家自然科学基金国家杰出青年科学基金
文献收藏号 CSCD:5857923

参考文献 共 21 共2页

1.  Kavasseri R G. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy,2009,34:1388-1393 CSCD被引 27    
2.  Tascikaraoglu A. A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev,2014,34:243-254 CSCD被引 53    
3.  Lei M. A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev,2009,13:915-920 CSCD被引 10    
4.  安鸿志. 时间序列分析,1989 CSCD被引 3    
5.  Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica,1982,50:987 CSCD被引 413    
6.  Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J Econom,1986,31:307-327 CSCD被引 469    
7.  Engle R F. Estimating time varying risk premia in the term structure: The Arch-M model. Econometrica,1987,55:391 CSCD被引 46    
8.  Nelson D B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica,1991,59:347 CSCD被引 145    
9.  Harvey A. Unobserved component time series models with Arch disturbances. J Econom,1992,52:129-157 CSCD被引 3    
10.  Kamal L. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Solar Energy,1997,61:23-32 CSCD被引 24    
11.  Cadenas E. Wind speed forecasting in the South Coast of Oaxaca, Mexico. Renew Energy,2007,32:2116-2128 CSCD被引 6    
12.  Liu H. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy,2011,88:724-732 CSCD被引 6    
13.  Wang J. A hybrid forecasting model based on outlier detection and fuzzy time series-A case study on Hainan wind farm of China. Energy,2014,76:526-541 CSCD被引 2    
14.  Dickey D A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica,1981,49:1057 CSCD被引 72    
15.  Kwiatkowski D. Testing the null hypothesis of stationarity against the alternative of a unit root. J Econom,1992,54:159-178 CSCD被引 43    
16.  Kao J C. Computer simulation of ocean wave grouping. Proceedings of the 7th Congress of APRD-IAHR,1990:339-343 CSCD被引 1    
17.  Huang M C. Wave parameters and functions in wavelet analysis. Ocean Eng,2004,31:111-125 CSCD被引 5    
18.  Ewing B T. Time series analysis of wind speed with time-varying turbulence. Environmetrics,2006,17:119-127 CSCD被引 1    
19.  贺德馨. 风工程与工业空气动力学,2006 CSCD被引 136    
20.  Banuelos-Ruedas F. Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew Sustain Energy Rev,2010,14:2383-2391 CSCD被引 8    
引证文献 1

1 摆玉龙 基于变分模态分解的机器学习模型择优风速预测系统 地球科学进展,2021,36(9):937-949
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号