锚链动态效应对海上浮式风力机整体系统动响应的影响
Impacts of moving catenary mooring-lines on the dynamic response of floating wind turbine
查看参考文献16篇
文摘
|
建立了海上浮式风力机包括弹性叶片、塔架以及SPAR浮体和悬链线式系泊线的整体系统动力模型,并基于改进的三维动态悬链线理论和有限元进行了5MW大型风力机的动响应数值模拟和分析;与以往的准静态方法和简化模型不同,本文考虑了系泊系统的动态特性(例如惯性力和阻尼力)、以及大尺寸柔性部件叶片、塔架等的弹性动力,分析了在波浪载荷下的风力机系统动响应.给出了悬链线式系泊线上的惯性载荷与黏性水动阻力等动态效应对系泊张力及其运动特性的影响,通过与仅考虑静态回复力的准静态法结果对比,分析了系泊系统动态特性对风力机结构响应的影响.我们的数值结果表明:考虑系泊线的动态特性,其动张力会明显增大,系泊线松弛-张紧的冲击张力幅值差可达到准静态值的10倍以上.当波浪频率远高于系统频率时,系泊系统的动态效应会加速结构瞬态项的衰减,而波浪频率与系统频率接近时,系泊系统的动态特性能明显降低浮体的响应位移,幅值降低约20%. |
其他语种文摘
|
The dynamic response of a floating wind turbine with 5-megawatt power and large size undergoing different ocean waves is examined by the numerical simulations based on a modified approach which combines the 3D flexible catenary theory with the finite element method. By use of our modified approach, the additional mooring dynamic behaviors including the structural inertial effect and fluid drag, compared to the previous quasi-static model, are involved in this study; what’s more, the integrated system of which the dynamic interaction between the flexible components such as blades, tower, SPAR platform and catenary mooring system is considered too. The influences of catenary mooring-line inertia and fluid damping force on tension and motion characteristics of catenary mooring system are presented, and the impact of mooring-line dynamics on the integrated system of wind turbine response is studied and compared with the quasi-static method which only includes the static restoring force of the catenary. Our numerical results show that the dynamic characteristics of mooring-line may significantly increase the top tension, particularly, the peak-trough tension difference of snap tension may be more than 10 times larger than the quasi-static result owing to the occurrence of taut-slack during the dynamic response on certain situations. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the dynamic characteristics of mooring systems can significantly reduce the response displacement of the floating SPAR, i.e. the amplitude is reduced by 20%. |
来源
|
中国科学. 物理学
, 力学, 天文学,2016,46(12):124711-1-124711-11 【核心库】
|
DOI
|
10.1360/SSPMA2016-00277
|
关键词
|
动响应
;
浮式风力机
;
系泊悬链线
;
动张力
|
地址
|
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
能源与动力工程 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:5857921
|
参考文献 共
16
共1页
|
1.
Robertson A N. Loads analysis of several offshore floating wind turbine concepts.
Proceedings of the Twenty-First International Offshore and Polar Engineering Conference,2011
|
CSCD被引
2
次
|
|
|
|
2.
Karimirad M. Wave-and wind-induced dynamic response of a spar-type offshore wind turbine.
J Waterway Port Coastal Ocean Eng,2012,138:9-20
|
CSCD被引
12
次
|
|
|
|
3.
Matha D. Model development and loads analysis of a wind turbine on a floating offshore tension leg platform.
Proceedings of the European Offshore Wind Conference and Exhibition,2010
|
CSCD被引
1
次
|
|
|
|
4.
Jonkman J M.
Dynamics modeling and loads analysis of an offshore floating wind turbine. Technical Report. NREL/TP-500-41958,2007
|
CSCD被引
2
次
|
|
|
|
5.
Browning J R. Calibration and validation of the FAST dynamic simulation tool for a spar-type floating offshore wind turbine.
Proceedings of 2012 Science of Making Torque from Wind Conference,2012
|
CSCD被引
2
次
|
|
|
|
6.
Jonkman J M. Loads analysis of a floating offshore wind turbine using fully coupled simulation.
Proceedings of Wind Power Conference and Exhibition,2007
|
CSCD被引
1
次
|
|
|
|
7.
Waris M B. Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model.
Coupled Syst Mech,2012,1:247-268
|
CSCD被引
1
次
|
|
|
|
8.
Matha D. Non-linear multi-body mooring system model for floating offshore wind turbines.
Proceedings of European Wind Energy Association offshore 2011,2011
|
CSCD被引
1
次
|
|
|
|
9.
Kallesoe B S. Aero-hydro-elastic response of a floating platform supporting several wind turbines.
Proceedings of 49th Aerospace Industries Association of America Aerospace Sciences Meeting,2011
|
CSCD被引
1
次
|
|
|
|
10.
Jeon S H. Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables.
Ocean Eng,2013,72:356-364
|
CSCD被引
19
次
|
|
|
|
11.
Christiansen S. Damping wind and wave loads on a floating wind turbine.
Energies,2013,6:4097-4116
|
CSCD被引
2
次
|
|
|
|
12.
Browning J R. Calibration and validation of the FAST dynamic simulation tool for a spar-type floating offshore wind turbine.
Proceedings of 2012 Science of Making Torque from Wind Conference,2012
|
CSCD被引
2
次
|
|
|
|
13.
Jonkman J M.
Definition of the Floating System for Phase IV of OC3,2010
|
CSCD被引
10
次
|
|
|
|
14.
Jonkman J M.
Definition of a 5-MW reference wind turbine for offshore system development. Technical Report. NREL/TP-500-38060,2009
|
CSCD被引
3
次
|
|
|
|
15.
Karimirad M. Modeling aspects of a floating wind turbine for coupled wave-Wind-induced dynamic analyses.
Renewa Energy,2013,53:299-305
|
CSCD被引
9
次
|
|
|
|
16.
Shin H. Model test of new floating offshore wind turbine platforms.
Int J Naval Architect Ocean Eng,2013,5:199-209
|
CSCD被引
3
次
|
|
|
|
|