四川会理天宝山矿床深部新发现铜矿与铅锌矿的成因关系探讨
The genetic relationship between Cu- and Zn-dominant mineralization in the Tianbaoshan deposit, Southwest China
查看参考文献49篇
文摘
|
天宝山矿床是川滇黔接壤铅锌矿集区内的代表性铅锌矿床之一,赋存于上震旦统灯影组白云岩中。近年来,该矿床深部发现了以铜为主的矿化,甚至形成铜矿体。目前,对铜矿成因及其与铅锌矿的关系尚不清晰。本文报道新发现铜矿的矿物学和同位素地球化学资料,以期揭示铜矿的成矿物质来源,结合铝锌矿的相关研究,探讨铜矿形成机制及其与铅锌矿的成因关系。镜下观察和扫描电镜分析显示,铜矿石中主要金属矿物为黄铜矿和银黝铜矿,其次为方铅矿和毒砂,含少量闪锌矿和黄铁矿;铅锌矿石中闪锌矿是主要金属矿物,方铅矿和黄铁矿次之,含少量黄铜矿和深红银矿。铜矿石中闪锌矿主要呈半自形-他形粒状,与黄铜矿共生或被其包裹,方铅矿主要呈细脉状充填在黄铜矿、银黝铜矿和毒砂的裂隙中或呈他形粒状分布在这些矿物中;铅锌矿石中黄铜矿主要呈浸染状分布于闪锌矿之中。两类矿石金属矿物的组构特征,显示铜矿物与铅锌矿物具有密切的共生、穿插和包裹关系,应属同期成矿。同位素地球化学数据显示,铜矿石中黄铜矿的δ~(34)S_(CDT)值为3.9‰~ 4.2‰(均值为4.1‰, n =3),铅锌矿石闪锌矿的δ~(34)S_(CDT)值为3.3‰~3.9‰(均值为3.5‰,n =3),十分相近,暗示它们具有相似的S源,应均属赋矿地层海相蒸发岩中硫酸盐热化学还原作用的产物。铜矿石中黄铜矿的~(206)pb/~(204)Pb=18.441 ~18.476(均值为18.461,n=3),~(207)Pb/~(204)Pb=15.731 ~15.751(均值为15.741,n=3),~(208)Pb/~(204)Pb=38.809 ~ 38.873(均值为38.849,n = 3),μ=9.72~9.76;铅锌矿石中方铅矿的~(206)Pb/~(204)Pb=18.442 ~ 18.480(均值为18.455,n=3),~(207)Pb/~(204)Pb = 15.746 ~ 15.763 (均值为15.752,n = 3),~(208)Pb/~(204)Pb =38.793 ~ 38.892(均值为38.840,n =3), μ=9.75 ~9.78。两者具有相近的Pb同位素组成且其壳源特征明显,表明它们的成矿金属来源相似,均来自上地壳,与赋矿沉积岩有关。综上,矿物学和同位素地球化学证据表明,天宝山矿床深部新发现铜矿与铅锌矿具有明显的同期共生关系和相似的成矿物质来源,是同一成矿热液体系不同阶段演化的产物。天宝山铜铅锌矿床与MVT矿床的成矿特征不同,暗示其成矿作用(环境)特殊,可能与矿床所处的地质背景有关,其成因认识对川滇黔接壤区同类型矿床深部找铜矿具有重要的指导意义。 |
其他语种文摘
|
The Tianbaoshan,a typical Zn-Pb deposit in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province,is hosted by dolostone of Upper Sinian Dengying Formation. Recently,a Cu-dominant mineralization was discovered in the deep of the Tianbaoshan deposit and even formed Cu ore body. However, the origin of the Cu ores and the genetic relationship between Cu- and Zn-dominant mineralization are still unclear. This paper presents the mineralogical and isotope geochemical data of the Cu ores, integrates with those of Zn-Pb ores,in order to revealing the sources of ore-forming mineralized elements,and discussing its ore genesis and the genetic relationship with Zn-Pb ores. The microscopic observation and scanning electron microscope (SEM) analysis indicate that Cu ores are mainly composed of chalcopyrite and freibergite, followed by galena and arsenopyrite, with a small number of sphalerite and pyrite. Sphalerite is the main sulfide mineral in Pb-Zn ores, followed by galena and pyrite,with a little of chalcopyrite and pyrargyrite. In the Cu ores, sphalerite occurs as subhedral-xenomorphic granular and coexists with chalcopyrite or enclosed by chalcopyrite grain, while galena fills into the fracture of chalcopyrite, freibergite and arsenopyrite as veinlet or occurs as xenomorphic granular that was enclosed by those minerals. In the Pb-Zn ores, chalcopyrite presents as disseminated structure and distributes in sphalerite. The mineralogy,textures and structures of metal minerals in Cu- and Zn-dominant ores suggest that chalcopyrite has closely symbiotic, inserted and enclosed relationship with sphalerite and galena,and they should be formed at the same time. δ~(34) S_(CDT) values of chalcopyrite from Cu-dominant ores range from 3.9‰ to 4.2‰ (mean 4.1‰, n =3), similar to those of sphalerite from Zn-dominant ores (3.3‰ to 3.9‰, mean 3.5‰, n =3), indicating that the sources of reduced sulfur for the two types of ores are similar and all are mainly related to the sulfate in evaporites within ore-hosting strata. ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values of chalcopyrite from Cu-dominant ores range from 18.441 to 18.476 (mean 18.461,n =3), 15.731 to 15.751 (mean 15.741,n =3), and 38.809 to 38.873 (mean 38.849, n =3) with μ values range from 9.72 to 9.76,similar to those of galena from Zn-dominant ores (~(206)Pb/ ~(204)Pb = 18.442 ~ 18.480 (mean 18.455, n=3), ~(207)Pb/~(204)Pb = 15.746 ~ 15.763 (mean 15.752, n= 3), ~(208)Pb/~(204)Pb = 38.793 ~ 38.892 (mean 38.840,n =3), and μ = 9.75 ~9.78). This reveals a clearly crustal source of Pb,and Cu-dominant ores have the same metal sources to the Zn-dominant ores,which are all related to upper crust (the ore-hosting sedimentary rocks). Studies on mineralogy,textures and structures, S and Pb isotope geochemistry demonstrate that the sources of newly found Cu ores and Pb-Zn ores are the same, and the two types of ores were belonged to one hydrothermal system and they were the produces formed at the same age with different ore-forming stages. The ore genesis of the Tianbaoshan Cu-Pb-Zn deposit is absolutely different from MVT deposit, suggesting a special mineralization (environment) related to local geological setting. This paper has vital guiding significance for Cu ore prospecting in the deep of the Pb-Zn deposits in the SYG province, western Yangtze Block, SW China. |
来源
|
岩石学报
,2016,32(11):3407-3417 【核心库】
|
关键词
|
矿物学
;
S和Pb同位素
;
铜矿成因及其与铅锌矿的关系
;
天宝山铜铅锌矿床
|
地址
|
1.
中国地质调查局发展研究中心, 矿床地球化学国家重点实验室, 北京, 100037
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
3.
昆明理工大学国土资源工程学院, 昆明, 650093
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金重点项目
;
面上项目
|
文献收藏号
|
CSCD:5846924
|
参考文献 共
49
共3页
|
1.
Basuki N I. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru.
Economic Geology,2008,103(4):783-799
|
CSCD被引
43
次
|
|
|
|
2.
Carr G R. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales.
Economic Geology,1995,90(6):1467-1505
|
CSCD被引
17
次
|
|
|
|
3.
Chaussidon M. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions.
Earth and Planetary Science Letters,1989,92(2):144-156
|
CSCD被引
74
次
|
|
|
|
4.
Claypool G E. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation.
Chemical Geology,1980,28:199-260
|
CSCD被引
136
次
|
|
|
|
5.
Cromie P W. Exploration for carbonate-hosted Pb-Zn deposits, Sichuan, P. R. C.
Proceedings of the 30~(th) International Geological Congress,1996:412
|
CSCD被引
1
次
|
|
|
|
6.
Hu R Z. Multiple Mesozoic mineralization events in South China: An introduction to the thematic issue.
Mineralium Deposita,2012,47(6):579-588
|
CSCD被引
130
次
|
|
|
|
7.
Jorgenson B B. Bacterial sulfate reduction above 100℃ in deep-sea hydrothermal vent sediments.
Science,1992,258(5089):1756-1757
|
CSCD被引
38
次
|
|
|
|
8.
Leach D L. Sediment-hosted lead-zinc deposits: A global perspective.
Economic Geology,2005,100:561-607
|
CSCD被引
97
次
|
|
|
|
9.
Leach D L. Sediment-hosted lead-zinc deposits in Earth history.
Economic Geology,2010,105(3):593-625
|
CSCD被引
110
次
|
|
|
|
10.
Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.
Economic Geology,1972,67(5):551-578
|
CSCD被引
511
次
|
|
|
|
11.
Sverjensky D A. Chemical evolution of basinal brines that formed sediment-hosted Cu-Pb-Zn deposits.
Sediment Hosted Stratiform Copper Deposits, 36,1989:127-134
|
CSCD被引
1
次
|
|
|
|
12.
Wang C M. Sediment-hosted Pb-Zn Deposits in Southwest Sanjiang Tethys and Kangdian Area on the Western Margin of Yangtze Craton.
Acta Geologica Sinica,2010,84(6):1428-1438
|
CSCD被引
34
次
|
|
|
|
13.
Wang X C. Metallogenic mechanism of the Tianbaoshan Pb-Zn deposit, Sichuan.
Chinese Journal of Geochemistry,2000,19(2):121-133
|
CSCD被引
13
次
|
|
|
|
14.
Zartman R E. Plumbotectonics-the model.
Tectonophysics,1981,75:135-162
|
CSCD被引
726
次
|
|
|
|
15.
Zhang C Q. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, Southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of the Jinshachang deposit.
Journal of Asian Earth Sciences,2015,103:103-114
|
CSCD被引
42
次
|
|
|
|
16.
Zheng M H. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan.
China Economic Geology,1991,86(4):831-846
|
CSCD被引
27
次
|
|
|
|
17.
Zhou C X. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constraints.
Economic Geology,2001,96(3):583-598
|
CSCD被引
61
次
|
|
|
|
18.
Zhou J X. Ore genesis of the Tianbaoshan carbonate-hosted Pb-Zn deposit,Southwest China: Geologic and isotopic (C-H-O-S-Pb) evidence.
International Geology Review,2013,55(10):1300-1310
|
CSCD被引
17
次
|
|
|
|
19.
Zhou J X. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China.
Ore Geology Reviews,2013,53:77-92
|
CSCD被引
94
次
|
|
|
|
20.
Zhou J X. The origin of the Maozu carbonate-hosted Pb-Zn deposit, Southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age.
Journal of Asian Earth Sciences,2013,73:39-47
|
CSCD被引
55
次
|
|
|
|
|