Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti~(3+) as conduction pathways
查看参考文献32篇
文摘
|
PX-phase PbTiO_3 (PT) nanowires with open channels running along the length direction have been investigated as an anode material for lithium ion batteries. This material shows a stabilized reversible specific capacity of about 410 mAh·g~(-1) up to 200 cycles with a charge/discharge voltage plateau of around 0.3-0.65 V. In addition, it exhibits superior high-rate performance, with 90% and 77% capacity retention observed at 1 and 2 A·g~(-1), respectively. At a very high current rate of 10 A·g~(-1), a specific capacity of over 170 mAh·g~(-1) is retained up to 100 cycles, significantly outperforming the rate capability reported for Pb and Pb oxides. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses along with the cyclic voltammogram results reveal that the PX-phase PT nanowires undergo irreversible structural amorphization and reduction reactions during the initial cycle, which allow them to transform into a composite structure composed of 2-5 nm Pb nanoparticles uniformly dispersed in the 1D amorphous Li2O·TiO_2·LiTiO_2 matrix. In this composite structure, the presence of abundant amounts of Ti~(3+) in both the charged and discharged states enhances the electrical conductance of the system, whereas the presence of ultrafine Pb nanoparticles imparts high reversible capacity. The structurally stable TiO_2-based amorphous matrix can also considerably buffer the volume variation during the charge/discharge process, thereby facilitating extremely stable cycling performance. This compound combines the high specific capacity of Pb-based materials and the good rate capability of Ti~(3+)-based wiring. Our results might furnish a possible route for achieving superior cycling and rate performance and contribute towards the search for next-generation anode materials. |
来源
|
Nano Research
,2016,9(2):353-362 【核心库】
|
DOI
|
10.1007/s12274-015-0914-8
|
关键词
|
PbTiO_3 nanowires
;
lithium ion anode materials
;
amorphous Ti~(3+)-rich matrix
;
composite structure
|
地址
|
1.
Division of Energy and Environment in Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055
2.
Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055
3.
Department of Chemistry, Tsinghua University, Beijing, 100084
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1998-0124 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
Shenzhen Special Fund for the Development of Emerging Industries
;
Shenzhen Peacock Plan
|
文献收藏号
|
CSCD:5845835
|
参考文献 共
32
共2页
|
1.
Armand M. Building better batteries.
Nature,2008,451:652-657
|
CSCD被引
1179
次
|
|
|
|
2.
Park D Y. Carbothermal synthesis of molybdenum(IV) oxide as a high rate anode for rechargeable lithium batteries.
J. Power Sources,2015,280:1-4
|
CSCD被引
2
次
|
|
|
|
3.
Liang J W. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries.
Nano Res,2015,8:1497-1504
|
CSCD被引
14
次
|
|
|
|
4.
Im H S. Phase evolution of tin nanocrystals in lithium ion batteries.
ACS Nano,2013,7:11103-11111
|
CSCD被引
3
次
|
|
|
|
5.
Chen M H. Porous α-Fe_2O_3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries.
Nano Energy,2014,9:364-372
|
CSCD被引
7
次
|
|
|
|
6.
Deng D. Green energy storage materials: Nanostructured TiO_2 and Sn-based anodes for lithium-ion batteries.
Energy Environ. Sci,2009,2:818-837
|
CSCD被引
29
次
|
|
|
|
7.
Plylahan N. High energy and power density TiO_2 nanotube electrodes for single and complete lithium-ion batteries.
J. Power Sources,2015,273:1182-1188
|
CSCD被引
5
次
|
|
|
|
8.
Su D W. Mesocrystal Co_3O_4 nanoplatelets as high capacity anode materials for Li-ion batteries.
Nano Res,2014,7:794-803
|
CSCD被引
13
次
|
|
|
|
9.
Jiang J. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.
Adv. Mater,2012,24:5166-5180
|
CSCD被引
116
次
|
|
|
|
10.
Li H. Research on advanced materials for Li-ion batteries.
Adv. Mater,2009,21:4593-4607
|
CSCD被引
139
次
|
|
|
|
11.
Konstantinov K. Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries.
J. Power Sources,2006,159:241-244
|
CSCD被引
3
次
|
|
|
|
12.
Pan Q M. PbO@C core-shell nanocomposites as an anode material of lithiumion batteries.
Electrochem. Commun,2009,11:917-920
|
CSCD被引
1
次
|
|
|
|
13.
Martos M. Lead-based systems as suitable anode materials for Li-ion batteries.
Electrochim. Acta,2003,48:615-621
|
CSCD被引
3
次
|
|
|
|
14.
Wang J. Structure determination and compositional modification of body-centered tetragonal PX-phase lead titanate.
Chem. Mater,2011,23:2529-2535
|
CSCD被引
3
次
|
|
|
|
15.
Yu X Y. Rutile TiO_2 submicroboxes with superior lithium storage properties.
Angew. Chem., Int. Ed,2015,54:4001-4004
|
CSCD被引
11
次
|
|
|
|
16.
Tian M. A three-dimensional carbon nano-network for high performance lithium ion batteries.
Nano Energy,2015,11:500-509
|
CSCD被引
7
次
|
|
|
|
17.
Ji L W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.
Energy Environ. Sci,2011,4:2682-2699
|
CSCD被引
124
次
|
|
|
|
18.
Henningsson A. Electronic structure of electrochemically Li-inserted TiO_2 studied with synchrotron radiation electron spectroscopies.
J. Chem. Phys,2003,118:5607-5612
|
CSCD被引
2
次
|
|
|
|
19.
Li X H. Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties.
Carbon,2015,81:739-747
|
CSCD被引
4
次
|
|
|
|
20.
Ohzuku T. Lead oxides as cathode for lithium non-aqueous cells.
Electrochim. Acta,1981,26:751-754
|
CSCD被引
1
次
|
|
|
|
|