基于人眼视觉特性的NSCT医学图像自适应融合
Adaptive Medical Image Fusion Based on Human Visual Features
查看参考文献29篇
文摘
|
医学图像融合对于临床诊断具有重要的应用价值.针对多模态医学图像特性,本文提出一种基于人类视觉特性的医学图像自适应融合方法.首先,对经配准的源图像进行非间隔采样轮廓变换((Nonsubsampled Coutourlet,NSCT)多尺度分解,得到低频子带和若干高频方向子带;其次,根据低频子带集中了大部分源图像能量和决定图像轮廓的特点,采用区域能量与平均梯度相结合的方法进行融合;根据人眼对图像对比度及边缘、纹理的高敏感度,在高频子带系数的选取时提出区域拉普拉斯能量、方向对比度与脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)相结合的融合策略;进而,提出了把与人类视觉高度一致的加权结构相似度(Weighted Structure Similarity,WSSIM)作为图像融合目标函数,自适应地获取各子带的最优权值;最后,对灰度图像和彩色图像进行了大量融合比较实验,并对不同融合方法进行分析对比.实验结果表明:本文算法不仅可以有效保留源图像的信息,而且可以使融合图像灰度级更分散,更好地保留了图像边缘信息,具有更好的视觉效果. |
其他语种文摘
|
Medical image fusion has very important application value for medical image analysis and diseases diagnosis.According to the characteristics of multi modality medical image and human visual features,a new medical image fusion algorithm in NSCT (nonsubsampled coutourlet,NSCT) domain is proposed.Firstly,source images after registration are decomposed into low and high frequency sub-bands using NSCT.According to the low frequency subbands concentrating the majority energy of the source image and determining the image coutour,a fusion rule based on weighted region average energy combined with average gradient is adopted in low frequency subband coefficients.Moreover,according to human visual system which is more sensitive to contrast and edge,texture of image,the fusion strategy based on directive contrast integrated with the improved energy of Laplacian and PCNN (Pulse Coupled Neural Network,PCNN) are used to fuse high-frequency subbands.Furthermore,a closed loop feedback is introduced into the fusion rules of low and high frequency subbands to obtain optimal fused weights adaptively by using WSSIM (Weighted Structure Similarity,WSSIM) which highly consistent with the HVS(human visual features,HVS) as objective function.Finally,a lot of experiments of fusion of images including gray images and color images based on different fusion methods are conducted.The experiment results are analyzed in terms of visual quality and objective evaluation.The experiment results show that the proposed algorithm can effectively preserve information and significantly improve the performance of fusion image in terms of quantity of information,dispersed gray scale,visual quality and objective evaluation index. |
来源
|
电子学报
,2016,44(8):1932-1939 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2016.08.023
|
关键词
|
医学图像融合
;
人类视觉特征
;
加权结构相似度
;
非间隔采样轮廓变换
;
拉普拉斯能量和方向对比度
;
脉冲耦合神经网络
|
地址
|
1.
浙江工商大学信息与电子工程学院, 浙江, 杭州, 310012
2.
浙江理工大学自动化研究所, 浙江, 杭州, 310012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5842543
|
参考文献 共
29
共2页
|
1.
Bhatnagar G. Directive contrast based multimodal medical image fusion in NSCT domain.
IEEE Transactions on multimedia,2013,15(5):1014-1024
|
CSCD被引
24
次
|
|
|
|
2.
Prakash C. Medical image fusion based on redundancy DWT andMamdani type min-sum mean-of-max techniques with quantitative analysis.
International Conference on Recent Advances in Computing and Software Systems 2012,2012:54-59
|
CSCD被引
1
次
|
|
|
|
3.
Shen Y. A nonsubsampled contourlet transform based medical image fusion method.
Information Technology Journal,2013,12(4):749-755
|
CSCD被引
4
次
|
|
|
|
4.
陶观群. 小波分析方法在医学图像融合中的应用.
西安电子科技大学学报(自然科学版),2004,31(1):82-86
|
CSCD被引
8
次
|
|
|
|
5.
Ling T. An improved medical image fusion algorithm based on wavelet transform.
Seventh International Conference on Natural Computation (ICNC)2011,2011:76-78
|
CSCD被引
1
次
|
|
|
|
6.
Barmas. Contourlet-based multispectral image fusion.
7th IASTED International Conference on Visualization,Imaging,and Image Processing VIIP 2007,2007:11-14
|
CSCD被引
1
次
|
|
|
|
7.
杨艳春. 基于非下采样Contourlet变换的医学图像融合方法.
计算机科学,2013,40(3):310-313
|
CSCD被引
2
次
|
|
|
|
8.
焦李成.
图像多尺度几何分析理论与应用-后小波分析理论与应用,2008:280-288
|
CSCD被引
1
次
|
|
|
|
9.
Cunha A L. The nonsubsampled contourlet transform:theory,design and applications.
IEEE Transactions on Image Processing,2006,15(10):3089-3101
|
CSCD被引
241
次
|
|
|
|
10.
郝文超. NSCT域内基于自适应PCNN的红外与可见光图像融合算法.
西华大学学报(自然科学版),2014,33(3):11-15
|
CSCD被引
6
次
|
|
|
|
11.
江平. 基于NSST和自适应PCNN的图像融合算法.
激光与红外,2014,44(1):108-113
|
CSCD被引
26
次
|
|
|
|
12.
Chang X. Multicoutourlet-based adaptive fusion of infrared and visible remote sensing images.
IEEE Geosicience and Remote Sensing Letters,2010,7(3):549-553
|
CSCD被引
7
次
|
|
|
|
13.
Liu F. Image fusion using adaptive dual-treediscrete wavelet packets based on the noise distribution estimation.
International Conference on Audio,Language and image 2012,2012:475-479
|
CSCD被引
1
次
|
|
|
|
14.
杨晓慧. 基于活性测度和闭环反馈的非下采样Contourlet域图像融合.
电子与信息学报,2010,32(2):422-426
|
CSCD被引
11
次
|
|
|
|
15.
任仙怡. 基于视觉注意机制与区域结构相似度的图像融合质量评价.
计算机应用,2011,31(11):3022-3026
|
CSCD被引
3
次
|
|
|
|
16.
Wang Z. A universal image quality index.
IEEE Signal Processing Letters,2002,9(3):81-84
|
CSCD被引
286
次
|
|
|
|
17.
Yang C. A novel similarity basedquality metric for image fusion.
Information Fusion,2008,9(2):156-160
|
CSCD被引
23
次
|
|
|
|
18.
Wang Z. Multi-scale structural similarity forimage quality assessment.
37th Asilomar Conference on Signals,Systems and Computers,2003:1398-1402
|
CSCD被引
1
次
|
|
|
|
19.
李美丽. 基于NSCT和PCNN的红外与可见光图像融合方法.
光电工程,2010,37(6):90-95
|
CSCD被引
23
次
|
|
|
|
20.
杨艳春. 基于提升小波变换与自适应PCNN的医学图像融合方法.
计算机辅助设计与图形学学报,2012,24(4):494-499
|
CSCD被引
20
次
|
|
|
|
|