属力学行为中应变路径效应的研究进展
Development of strain path effects on the mechanical behaviors of metals
查看参考文献84篇
文摘
|
在塑性加工中,金属的力学行为强烈依赖于所经历的应变路径;另外,有限元数值计算领域对应变路径效应的研究需求也越来越迫切。因此,应变路径效应的研究重新受到研究者的关注。结合文献调研和研究经历,详细介绍了目前应变路径效应的研究进展。首先介绍了应变路径的表征方法,并分析了各个表征方法的适用范围和局限性。其次,综述了应变路径对金属力学行为的影响规律,分析了导致应变路径效应的微观机理,并介绍了现有的几种考虑应变路径效应的数值模型,以及应变路径效应在塑性加工技术中的应用。最后,对金属材料力学行为中应变路径效应未来的研究方向进行了展望。 |
其他语种文摘
|
During metal plastic forming, the mechanical behavior strongly depends on the strain path. In addition, the investigation of strain path effects is demanded more and more urgently in finite element numerical calculation. Therefore, it attracts many concerns again recently. Based on the literature survey and investigating experience, the development of strain path effects was introduced in detail. Firstly, the expression of strain path was introduced, and its application and localization were analyzed. Secondly, the influence of strain path on mechanical behaviors of metal was reviewed, and the micro mechanisms were also analyzed. Then, several numerical models considering strain path effects were introduced, and the applications of strain path effects in metal forming technology were reviewed. Finally, the prospects of future research direction for strain path effects in mechanical behaviors of metal were given. |
来源
|
锻压技术
,2016,41(10):1-10 【扩展库】
|
DOI
|
10.13330/j.issn.1000-3940.2016.10.001
|
关键词
|
应变路径
;
力学行为
;
变形
;
位错
;
晶体学织构
;
纤维组织
|
地址
|
1.
沈阳航空航天大学, 航空制造工艺数字化国防重点学科实验室, 辽宁, 沈阳, 110136
2.
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-3940 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
辽宁省教育厅科学研究计划项目
|
文献收藏号
|
CSCD:5829899
|
参考文献 共
84
共5页
|
1.
Cetlin P. The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing.
Metallurgical and Materials Transactions A,2003,34(3):589-601
|
CSCD被引
2
次
|
|
|
|
2.
Skolyszewski A. Some problems of multi-stage fine wire drawing of high-alloy steels and special alloys.
Journal of Materials Processing Technology,1996,60(1):155-160
|
CSCD被引
2
次
|
|
|
|
3.
Schmitt J H. A parameter for measuring the magnitude of a change of strain path: Validation and comparison with experiments on low carbon steel.
International Journal of Plasticity,1994,10(5):535-551
|
CSCD被引
4
次
|
|
|
|
4.
Rauch E F. Modelling the plastic behaviour of metals under complex loading conditions.
Modelling and Simulation in Materials Science and Engineering,2011,19(3):100-106
|
CSCD被引
3
次
|
|
|
|
5.
Van Riel M. Stress-strain responses for continuous orthogonal strain path changes with increasing sharpness.
Scripta Materialia,2007,57(5):381-384
|
CSCD被引
1
次
|
|
|
|
6.
Van Den Boogaard A H. Non-proportional deformation paths for sheet metal: experiments and models.
3rd Forming Technology Forum Zurich 2009 - Constitutive Modeling of Kinematic and Anisotropic Hardening Effects for Ductile Materials, Institute of Virtual Manufacturing, ETH Zurich,2009
|
CSCD被引
1
次
|
|
|
|
7.
Van Riel M.
Strain Path Dependency in Sheet Metal,2009
|
CSCD被引
1
次
|
|
|
|
8.
尹建成.
应变路径对907A钢力学行为的影响,2002
|
CSCD被引
1
次
|
|
|
|
9.
Barlat F. An alternative to kinematic hardening in classical plasticity.
International Journal of Plasticity,2011,27(9):1309-1327
|
CSCD被引
23
次
|
|
|
|
10.
Hasegawa T. "Region of constant flow stress" during compression of aluminium polycrystals prestrained by tension.
Scripta Metallurgica,1974,8(8):951-954
|
CSCD被引
1
次
|
|
|
|
11.
Hasegawa T. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium.
Materials Science and Engineering,1975,20:267-276
|
CSCD被引
1
次
|
|
|
|
12.
Hasegawa T. Effects of stress reversal and thermal recovery on stress vs strain behavior in aluminum.
Scripta Metallurgica,1980,14(10):1083-1087
|
CSCD被引
1
次
|
|
|
|
13.
Hasegawa T. Forward and reverse rearrangements of dislocations in tangled walls.
Materials Science and Engineering,1986,81:189-199
|
CSCD被引
1
次
|
|
|
|
14.
Li F. Strain path change effects in cube textured aluminium sheet.
Acta Metallurgica et Materialia,1991,39(11):2639-2650
|
CSCD被引
1
次
|
|
|
|
15.
Wagoner R H. Plastic behavior of aluminum-killed steel following plane-strain deformation.
Metallurgical Transactions A,1983,14(7):1487-1495
|
CSCD被引
2
次
|
|
|
|
16.
Yakou T. Stagnation of strain hardening during reversed straining of prestrained aluminium, copper and iron.
Transactions of the Japan Institute of Metals,1985,26(2):88-93
|
CSCD被引
1
次
|
|
|
|
17.
Barlat F. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample.
International Journal of Plasticity,2003,19(8):1215-1244
|
CSCD被引
3
次
|
|
|
|
18.
Rousselier G. A novel approach for anisotropic hardening modeling-Part I: Theory and its application to finite element analysis of deep drawing.
International Journal of Plasticity,2009,25(12):2383-2409
|
CSCD被引
2
次
|
|
|
|
19.
Rousselier G. A novel approach for anisotropic hardening modeling-Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material.
International Journal of Plasticity,2010,26(7):1029-1049
|
CSCD被引
1
次
|
|
|
|
20.
Hu Z. Work-hardening behavior of mild steel under stress reversal at large strains.
International Journal of Plasticity,1992,8(7):839-856
|
CSCD被引
2
次
|
|
|
|
|