孔挤压强化对2124铝合金疲劳寿命及微观组织的影响
Influence of Hole Cold Expansion on Microstructure and Fatigue Life of 2124 Aluminum Alloy
查看参考文献16篇
文摘
|
采用疲劳试验、透射电镜、扫描电镜及X射线衍射仪等方法研究了2124-T851铝合金厚板不同参数孔挤压强化后疲劳寿命与显微组织的变化。结果表明:孔挤压强化后试样的疲劳寿命先随挤压量的增大而升高,随后又迅速降低,挤压量为0. 4 mm时疲劳寿命达到峰值,较未强化增加12. 66倍;组织观察结果表明孔挤压强化后,在孔壁强化层内形成了位错胞状结构和残余压应力,并且随挤压量增大先迅速增加然后趋于平缓,强化层的形成可以有效延缓疲劳裂纹的扩展速率;同时,适当的孔挤压强化可改善表面粗糙度,降低裂纹萌生几率,从而提高材料的疲劳寿命。 |
其他语种文摘
|
The change of fatigue life and microstructure of 2124-T851 thick plate after cold expanded with different deformation was studied by fatigue test,TEM,SEM and X-ray diffraction apparatus. The results show that the fatigue life increases with the increase of expanded deformation until the maximum value is reached,and then decreased rapidly with the increase of expanded deformation. At0. 4 mm expanded deformation,fatigue life reach peak value,which is 12. 66 times of the non-cold-worked specimens. The microstructure research results show that the residual compressive stress and dislocation cell structure form around the cold-worked holes during the cold expansion,and increase quickly with the expanded deformation. The strengthened layer retarded the fatigue crack growth rate. The appropriate cold expanded deformation can improve the surface roughness of hole,and retard the initiation of fatigue crack,consequently improving the whole fatigue life. |
来源
|
航空材料学报
,2016,36(5):31-37 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2016.5.006
|
关键词
|
2124铝合金
;
孔挤压强化
;
疲劳寿命
;
残余应力
;
表面粗糙度
|
地址
|
北京航空材料研究院, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:5810905
|
参考文献 共
16
共1页
|
1.
赵振业. 高强度合金应用与抗疲劳制造技术.
航空制造技术,2007(10):30-33
|
CSCD被引
11
次
|
|
|
|
2.
陈圆圆.
2xxx 航空铝合金的疲劳与断裂行为研究这,2010
|
CSCD被引
1
次
|
|
|
|
3.
周明哲.
航空用2E12合金热处理工艺与疲劳行为的相关基础问题研究,2010
|
CSCD被引
2
次
|
|
|
|
4.
Golden P J. A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens.
International Journal of Fatigue,1999,21(Suppl 1):211-219
|
CSCD被引
9
次
|
|
|
|
5.
钱晓明. 飞机结构件紧固孔强化技术综述.
机械强度,2011,33(5):749-753
|
CSCD被引
20
次
|
|
|
|
6.
刘长珍. 开缝衬套冷挤压孔工艺.
航空制造技术,2000(4):46-48
|
CSCD被引
8
次
|
|
|
|
7.
Ozdemir A T. Relaxation of residual stresses at cold-worked fastener holes due to fatigue loading.
Fatigue Fracture of Engineering Materials Structures,1977,20(10):1443-1451
|
CSCD被引
6
次
|
|
|
|
8.
Pasta S. Fatigue crack propagation from a cold-worked hole.
Engineering Fracture Mechanics,2007,74(9):1525-1538
|
CSCD被引
5
次
|
|
|
|
9.
Chakherlou T N. A novel method of cold expansion which creates near-uniform compressive tangential residual stress around a fastener hole.
Fatigue & Fracture of Engineering Materials & Structures,2004,27(5):343-351
|
CSCD被引
9
次
|
|
|
|
10.
Yanishevsky M. Fractographic examination of coupons representing aircraft structural joints with and without hole cold expansion.
Engineering Failure Analysis,2013,30:74-90
|
CSCD被引
9
次
|
|
|
|
11.
Liu Y S. Study on the residual stress fields, surface quality,and fatigue performance of cold expansion hole.
Materials and Manufacturing Processes,2011,26(2):294-303
|
CSCD被引
3
次
|
|
|
|
12.
De Matos P F P. Material analysis of the effect of cold-working of rivet holes on the fatigue life of an aluminum alloy.
International Journal of Fatigue,2007,29(3):575-586
|
CSCD被引
13
次
|
|
|
|
13.
ASTM.
E 647-88a,Standard test method for measurement of fatigue crack growth rates,1978
|
CSCD被引
1
次
|
|
|
|
14.
Mcevily A J.
Fracture mechanics,microstructure, and the growth of long and short fatigue cracks,1984
|
CSCD被引
1
次
|
|
|
|
15.
Lacarac V. Fatigue crack growth from plain and cold expanded holes in aluminum alloys.
International Journal of Fatigue,2000,22(3):189-203
|
CSCD被引
7
次
|
|
|
|
16.
Ghfiri R. Fatigue life estimation after crack repair in 6005 A-T6 aluminium alloy using the cold expansion hole technique.
Fatigue & Fracture of Engineering Materials & Structures,2000,23(11):911-916
|
CSCD被引
4
次
|
|
|
|
|