海底蛇纹岩化伴生的碳酸盐岩研究进展
Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization
查看参考文献84篇
文摘
|
现代海洋环境中超基性岩广泛发生蛇纹岩化,导致富氢气(H_2)和无机成因甲烷(CH_4)的流体渗漏活动和化能自养生物群的发育,该过程常伴有自生碳酸盐岩和水镁石沉积的形成。本文综述了现代不同海洋环境(洋中脊、弧前泥火山与海沟等)与海底蛇纹岩化有关的碳酸盐岩的地质地球化学及标志性生物特征,介绍了自生碳酸盐岩及其中生物标志物研究无机成因CH_4记录的研究现状以及古代蛇纹岩化相关的碳酸盐岩的地质地球化学特征,指出了该领域存在的关键问题以及研究重点。 |
其他语种文摘
|
Serpentinization of ultramafic rocks,occurred widely in the modern ocean,results in the venting of hydrogen and abiogenic methane-rich fluids,thedevelopment of chemosynthetic communities,and the formation of authigenic carbonates and brucite. This paper has comprehensively reviewed the geological,geochemical and biomarker characteristics of authigenic carbonates associated with the serpentinization of ultramafic rocks in different modern oceanic settings(mid-ocean ridges,forearc of subduction zones and trench slope), introduced the research status of record of abiogenic methane in the authigenic carbonates and their biomarkers,and the geological and geochemical characteristics of the carbonates associated with the acient serpentinization,and finally pointed out some critical problems and key issues of the research in this discipline. |
来源
|
矿物岩石地球化学通报
,2016,35(4):789-799 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2016.04.019
|
关键词
|
蛇纹岩化
;
自生碳酸盐岩
;
CH_4
;
微生物作用
|
地址
|
中国科学院广州地球化学研究所, 中国科学院边缘海地质重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5804930
|
参考文献 共
84
共5页
|
1.
Alt J C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism.
Earth and Planetary Science Letters,2006,242(3/4):272-285
|
CSCD被引
11
次
|
|
|
|
2.
Andreani M. Tectonic structure,lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14'N).
Geochemistry,Geophysics,Geosystems,2014,15(9):3543-3571
|
CSCD被引
6
次
|
|
|
|
3.
Artemyev D A. The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc(South Urals).
Russian Geology and Geophysics,2010,51(7):750-763
|
CSCD被引
4
次
|
|
|
|
4.
Bach W. Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: Results from ODP Leg 209.
Earth and Planetary Science Letters,2011,311(3/4):242-252
|
CSCD被引
4
次
|
|
|
|
5.
Barbieri M. Stable isotope evidence for a marine origin of ophicalcites from the north-central Apennines(Italy).
Marine Geology,1979,30(3/4):193-204
|
CSCD被引
1
次
|
|
|
|
6.
Beard J S. A fossil,serpentinization-related hydrothermal vent,Ocean Drilling Program Leg 173,Site 1068(Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry.
Journal of Geophysical Research. B, Solid Earth(1978-2012),2000,105(B7):16527-16539
|
CSCD被引
6
次
|
|
|
|
7.
Birgel D. Lipid biomarker patterns of methaneseep microbialites from the Mesozoic convergent margin of California.
Organic Geochemistry,2006,37(10):1289-1302
|
CSCD被引
9
次
|
|
|
|
8.
Bonatti E. Ultramafic-carbonate breccias from the equatorial Mid Atlantic Ridge.
Marine Geology,1974,16(2):83-102
|
CSCD被引
2
次
|
|
|
|
9.
Bonatti E. Aragonite from deep sea ultramafic rocks.
Geochimica et Cosmochimica Acta,1980,44(8):1207-1214
|
CSCD被引
1
次
|
|
|
|
10.
Bradley A S. Extraordinary 13C enrichment of diether lipids at the Lost City hydrothermal field indicates a carbon-limited ecosystem.
Geochimica et Cosmochimica Acta,2009,73(1):102-118
|
CSCD被引
9
次
|
|
|
|
11.
Bradley A S. Structural diversity of diether lipids in carbonate chimneys at the Lost City hydrothermal field.
Organic Geochemistry,2009,40(12):1169-1178
|
CSCD被引
6
次
|
|
|
|
12.
Bradley A S. Multiple origins of methane at the Lost City hydrothermal field.
Earth and Planetary Science Letters,2010,297(1/2):34-41
|
CSCD被引
12
次
|
|
|
|
13.
Brazelton W J. Methaneand sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.
Applied and Environmental Microbiology,2006,72(9):6257-6270
|
CSCD被引
18
次
|
|
|
|
14.
Brazelton W J. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1, 000-year time scales in hydrothermal chimneys.
Proceedings of the National Academy of Sciences of the United States of America,2010,107(4):1612-1617
|
CSCD被引
5
次
|
|
|
|
15.
Brazelton W J. Physiological differentiation within a single-species biofilm fueled by serpentinization.
MBio,2011,2(4):E00127-E001111
|
CSCD被引
3
次
|
|
|
|
16.
Campbell K A. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry,fluids and palaeoenvironments.
Geofluids,2002,2(2):63-94
|
CSCD被引
34
次
|
|
|
|
17.
Carlson C. Stratigraphic and structural significance of foliate serpentinite breccias,Wilbur Springs.
Depositional facies of sedimentary serpentinite: Selected examples from the coast ranges,california,1984:108-112
|
CSCD被引
1
次
|
|
|
|
18.
Charlou J L. Geochemistry of high H_2 and CH_4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field(36°14'N,MAR).
Chemical Geology,2002,191(4):345-359
|
CSCD被引
56
次
|
|
|
|
19.
Charlou J L. High production and fluxes of H_2 and CH_4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge.
Diversity of hydrothermal systems on slow-spreading ocean ridges,2010:265-296
|
CSCD被引
1
次
|
|
|
|
20.
Clerc C. Ophicalcites from the northern Pyrenean belt: A field,petrographic and stable isotope study.
International Journal of Earth Sciences,2014,103(1):141-163
|
CSCD被引
1
次
|
|
|
|
|