青藏高原气候演变的湖相沉积有机地球化学记录———以兹格塘错为例
Climate Changes on the Tibetan Plateau Inferred from Organic Geochemistry Records in Lake Sediments—A Case of Lake Zigetang Co
查看参考文献42篇
文摘
|
为探究青藏高原全新世夏季风最强、气候最湿润阶段这一争论议题,本文应用气相色谱仪(GC-FID)和气相色谱-高温热转变-同位素比值质谱仪(GC-TC-IRMS), 分析了兹格塘错沉积岩心正构烷烃及其氢同位素特征。结果表明,兹格塘错岩心中主要以n-C_(15 /16 /17)为主峰碳的短链正构烷烃占据主导地位,指示了湖泊自生浮游藻类与菌类等低等生物对湖泊沉积岩心中的有机质贡献高于大型水生植物和陆生高等植物表皮蜡质所产生的有机质。基于正构烷烃参数(如:碳优势指数CPI值和平均碳链长度ACL值)及单体氢同位素比值在时间序列上的变化特征,指出兹格塘错流域的气候湿润期处于中全新世(5.8 ~ 2.7 cal ka BP), 明显滞后于早全新世的太阳辐射最强期,这主要归结于该流域冰川融水补给的匮乏及局地环流的影响。 |
其他语种文摘
|
In order to discuss which period was the strongest summer monsoon and the wetter conditions observed during the Holocene on the Tibetan Plateau,n-Alkanes and compound-specific hydrogen isotopes in sediments of Lake Zigetang Co were analyzed using gas chromatography(GC-FID) and gas chromatography-thermal conversion-isotope ratio mass spectrometry(GC-TC-IRMS). The results indicated that short chain n-alkanes C_(15),C_(16) and C_(17),which probably derived from aquatic algae,plankton and photosynthetic bacteria,dominated the n-alkane composition in lacustrine sediments of Lake Zigetang Co. The variation of n-alkane indicator ratios(e. g. ACL and CPI values) and δD values revealed that higher effective moisture availability at Lake Zigetang Co occurred in the middle Holocene(5.8 - 2.7 cal ka BP) that much later after the insolation maximum. This might be attributed to the absence of glacial meltwaters and local recycling of air masses in the catchment of Lake Zigetang Co. |
来源
|
矿物岩石地球化学通报
,2016,35(4):625-633 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2016.04.003
|
关键词
|
正构烷烃
;
单体氢同位素
;
古气候
;
湖相沉积物
;
兹格塘错
;
青藏高原
|
地址
|
1.
中国科学院南京地质古生物研究所, 现代古生物学和地层学国家重点实验室;;湖泊与环境国家重点实验室, 南京, 210008
2.
中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室;;环境地球化学国家重点实验室, 南京, 210008
3.
中国科学院南京地质古生物研究所, 中国科学院资源地层学与古地理学重点实验室, 南京, 210008
4.
中国科学院南京地质古生物研究所, 现代古生物学和地层学国家重点实验室, 南京, 210008
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
环境科学基础理论 |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:5804914
|
参考文献 共
42
共3页
|
1.
Bauld J. Benthic microbial communities of Australian saline lakes.
Limnology in Australia,1986:96-111
|
CSCD被引
1
次
|
|
|
|
2.
Berger A. Insolation values for the climate of the last 10million years.
Quaternary Science Reviews,1991,10(4):297-317
|
CSCD被引
300
次
|
|
|
|
3.
Blaauw M. Radiocarbon peat chronologies and environmental change.
Journal of the Royal Statistical Society: Series C (Applied Statistics),2005,54(4):805-816
|
CSCD被引
3
次
|
|
|
|
4.
Blaauw M. Methods and code for'classical' age-modelling of radiocarbon sequences.
Quaternary Geochronology,2010,5(5):512-518
|
CSCD被引
44
次
|
|
|
|
5.
Cranwell P A. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ.
Organic Geochemistry,1987,11(6):513-527
|
CSCD被引
154
次
|
|
|
|
6.
Eglinton G. Leaf epicuticular waxes.
Science,1967,156(3780):1322-1335
|
CSCD被引
185
次
|
|
|
|
7.
Ficken K J. An n-alkane proxy for the sedimentary input of submerged /floating freshwater aquatic macrophytes.
Organic Geochemistry,2000,31(7/8):745-749
|
CSCD被引
197
次
|
|
|
|
8.
Gasse F. A 13,000-year climate record from western Tibet.
Nature,1991,353(6346):742-745
|
CSCD被引
156
次
|
|
|
|
9.
Gu Z Y. Monsoon variations of the Qinghai-Xizang Plateau during the last 12, 000 years-Geochemical evidence from the sediments in the Siling Lake.
Chinese Science Bulletin,1993,38(7):577-581
|
CSCD被引
12
次
|
|
|
|
10.
Guenther F. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau.
Quaternary International,2013,313/314:3-16
|
CSCD被引
17
次
|
|
|
|
11.
Gunther F. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau.
Quaternary Science Reviews,2015,112:66-77
|
CSCD被引
12
次
|
|
|
|
12.
Han J. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments.
Proceeding of the National Academy of Sciences of the United States of America,1969,64(2):436-443
|
CSCD被引
31
次
|
|
|
|
13.
Herzschuh U. A late quaternary lake record from the Qilian Mountains(NW China): Evolution of the primary production and the water depth reconstructed from macrofossil, pollen,biomarker,and isotope data.
Global and Planetary Change,2005,46(1/4):361-379
|
CSCD被引
18
次
|
|
|
|
14.
Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,0 00 years.
Quaternary Science Reviews,2006,25(1/2):163-178
|
CSCD被引
102
次
|
|
|
|
15.
Herzschuh U. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.
Quaternary International,2006,154/155:113-121
|
CSCD被引
66
次
|
|
|
|
16.
Hou J Z. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond,Massachusetts(USA).
Organic Geochemistry,2007,38(6):977-984
|
CSCD被引
22
次
|
|
|
|
17.
Hu X. Climatic significance of n-alkanes and their compound-specific δD values from lake surface sediments on the Southwestern Tibetan Plateau.
Chinese Science Bulletin,2014,59(24):3022-3033
|
CSCD被引
7
次
|
|
|
|
18.
Huang Y S. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate variations.
Geology,2002,30(12):1103-1106
|
CSCD被引
27
次
|
|
|
|
19.
Liu W G. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau.
Organic Geochemistry,2005,36(6):851-860
|
CSCD被引
39
次
|
|
|
|
20.
Meyers P A. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments.
Organic Geochemistry,1993,20(7):867-900
|
CSCD被引
207
次
|
|
|
|
|