地理元胞自动机模型研究进展
Progress on Geographic Cellular Automata Model
查看参考文献55篇
文摘
|
元胞自动机(Cellular Automata,简称CA)是一种基于微观个体的相互作用空间离散动态模型,其强大的计算功能、固有的平行计算能力、高度动态及空间概念等特征,使它在模拟空间复杂系统的时空动态演变研究具有较强的优势。文章回顾了元胞自动机的发展历程,阐述了CA在地理学中的主要应用领域和研究进展,在此基础上,以现实世界地理实体及现代城市扩张特征为视角,分析目前CA研究所面临的问题,并对其未来的研究趋势进行了初步探讨,认为以下3个方面将是未来CA研究的热点:①利用不规则元胞及可控邻域的CA模型,对不同规则或不同邻域地理实体的模拟研究;②采用三维元胞自动机对现代城市扩张进行立体化模拟,以克服二维CA模型的缺陷;③将矢量元胞自动机模型应用于地理实体的模拟研究,进一步提高模拟精度。 |
其他语种文摘
|
Cellular Automata (CA) is a kind of spatial discrete dynamic model based on the interaction of micro individual, the inherent parallel computing ability, highly dynamic and spatial concepts and other features, the CA has outstanding advantages in the study of simulated the temporal and spatial dynamics evolution of complex spatial system. To put it simply, CA is not only a discrete system in time, space and state, but also a local grid dynamics model of both spatial interaction and consequence in time, its "bottom-up"research method being applied in various fields such as society, economy and scientific research. constantly.The paper reviewed the development process of cellular automata briefly, expounds the main application fields and study progress of CA in geography, on this basis, from the perspective of the real world geographic entities and the modern urban expansion,analysis the existing problems in the study of CA at present, then for the study trends of CA has carried on the preliminary discussion, The results of the analysis is that the following three aspects will be the focus of future CA research: 1) Use CA model which has irregular cell or controllable neighborhood to simulate the geographic entities of different rules or different neighborhood; 2) In order to overcome the defects of the two dimensional CA model, use three dimensional cellular automata to simulate the three-dimensional expansion of modern urban; 3) For the sake of improvethe accuracy of simulation,use the vector cellular automaton model to simulate the geographic entities. |
来源
|
地理科学
,2016,36(8):1190-1196 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2016.08.009
|
关键词
|
元胞自动机
;
研究进展
;
不规则邻域
;
三维元胞自动机
|
地址
|
1.
辽宁师范大学, 自然地理与空间信息科学辽宁省重点实验室, 辽宁, 大连, 116029
2.
辽宁师范大学, 自然地理与空间信息科学辽宁省重点实验室;;中国科学院陆地表层格局与模拟重点实验室, 辽宁, 大连, 116029
3.
中图地图出版社, 北京, 100054
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-0690 |
学科
|
测绘学 |
基金
|
辽宁省高等学校杰出青年学者成长计划项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5802534
|
参考文献 共
55
共3页
|
1.
周成虎.
地理元胞自动机,1999
|
CSCD被引
2
次
|
|
|
|
2.
Gardner M. The fantastic combinations of John Conway's new solitaire game "life".
Sci Am,1970,223:120-123
|
CSCD被引
20
次
|
|
|
|
3.
Worfram S.
A New Kind of Science,2002
|
CSCD被引
1
次
|
|
|
|
4.
Torsten H. A Monte Carlo approach to diffusion.
European Journal of Sociology,1965,6:43-67
|
CSCD被引
5
次
|
|
|
|
5.
Chapin F S. A probabilistic model for residential growth.
Transportation Research,1968,2(4):375-390
|
CSCD被引
3
次
|
|
|
|
6.
Couclelis H. Cellular worlds: a framework for modeling micro -macro dynamics.
Environment and Planning A,1985,17(5):585-596
|
CSCD被引
42
次
|
|
|
|
7.
White R. Cellular automata as the basis of integrated dynamic regional modelling.
Environment and Planning B: Planning and Design,1997,24(2):235-246
|
CSCD被引
29
次
|
|
|
|
8.
Batty M. Modeling urban dynamics through GIS-based cellular automata. Computers.
Environment and Urban Systems,1999,23:205-233
|
CSCD被引
71
次
|
|
|
|
9.
Wu F. Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system.
Environ Manage,1998,53(4):293-308
|
CSCD被引
9
次
|
|
|
|
10.
Waddell P. UrbanSim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning.
Journal of the American Planning Association,2002,68(3):297
|
CSCD被引
38
次
|
|
|
|
11.
Torrens P. Geosimulation and its Application to Urban Growth Modeling.
Complex Artificial Environments,2006:119-136
|
CSCD被引
1
次
|
|
|
|
12.
张显峰. 集成GIS和细胞自动机模型进行地理时空过程模拟与预测的新方法.
测绘学报,2001,30(2):148-155
|
CSCD被引
42
次
|
|
|
|
13.
黎夏. 基于神经网络的元胞自动机及模拟复杂土地利用系统.
地理研究,2005,24(1):19-27
|
CSCD被引
130
次
|
|
|
|
14.
何春阳. 大都市区城市扩展模型-以北京城市扩展模拟为例.
地理学报,2003,58(2):294-304
|
CSCD被引
60
次
|
|
|
|
15.
Cremer M. A fast simulation model for traffic flow on the basis of boolean operations.
Math Comput Simulat,1986,28(4):297-303
|
CSCD被引
40
次
|
|
|
|
16.
Wolfram S.
Theory and applications of cellular automata: includes selected papers 1983 - 1986,1986
|
CSCD被引
1
次
|
|
|
|
17.
Nagel K. A Cellular Automaton Model for Freeway Traffic.
J. Phys. I France,1992,2:2221-2229
|
CSCD被引
275
次
|
|
|
|
18.
Fukui M. Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed.
J Phys Soc Jpn,1996,65(6):1868-1870
|
CSCD被引
75
次
|
|
|
|
19.
Middleton A. Self-organization and a dynamical transition in traffic-flow models.
Phys Rev A,1992,46(10):R6124-R6127
|
CSCD被引
81
次
|
|
|
|
20.
Lei W. Cellular automaton traffic flow model between the Fukui-Ishibashi and Nagel-Schreckenberg models.
Phys. Rev. E,2001,63(5/2)
|
CSCD被引
1
次
|
|
|
|
|