|
飞片冲击起爆高能钝感高聚物粘结炸药的实验研究
Experimental Research on Initiation of Insensitive High Energy Plastic Bonded Explosives by Flyer Impact
查看参考文献11篇
文摘
|
为了对比奥克托今(HMX)基和三氨基三硝基苯(TATB)基高聚物粘结(PBX)炸药冲击起爆爆轰建立过程的差异,研究高能钝感炸药的爆轰成长特性,采用火炮驱动铝飞片实现平面冲击加载,建立一维拉格朗日锰铜压阻实验测试系统,得到高能PBXC03(以HMX为主)和高能钝感PBXC10(以TATB为主)炸药冲击起爆爆轰成长过程的不同拉格朗日位置处压力变化历史和前导冲击波时程曲线。结果表明:高能钝感PBXC10炸药的爆轰建立过程与高能PBXC03炸药明显不同,HMX基和TATB基PBX炸药冲击起爆和爆轰成长的物理机制存在较大差异。基于所得数据可标定高能钝感PBX炸药的反应速率方程。 |
其他语种文摘
|
In order to study the difference between detonation processes of HMX-based and TATB-based plastic bonded explosives and know more about the detonation growth characteristics of insensitive high energy explosives, an one-dimensional Lagrangian experimental test system is built based on manganin piezoresistive pressure gauge measurement technique, in which the aluminum flyers are used for planar impact loading. The impact initiation experiments are performed for PBXC03 (mainly HMX) and PBXC10 (mainly TATB) explosives. The pressure histories at different Lagrangian locations and the time-distance curve of shock front are obtained through experiment. The results show that the detonation growth progress of PBXC10 explosives distinctly distinguishes from that of PBXC03 explosives. This indicates that the physical mechanism of the shock initiation and detonation growth of HMX-based plastic bonded explosives is different from that of TATB-based plastic bonded explosives. The experimental data can be used to calibrate the reaction rate equation of insensitive high energy explosives. |
来源
|
兵工学报
,2016,37(8):1464-1468 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2016.08.018
|
关键词
|
兵器科学与技术
;
爆轰
;
高聚物粘结炸药
;
冲击起爆
;
飞片
;
拉格朗日实验
|
地址
|
1.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
2.
北京空间机电研究所, 北京, 100094
3.
北京应用物理与计算数学研究所, 北京, 100088
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国家自然科学基金重点项目
|
文献收藏号
|
CSCD:5789837
|
参考文献 共
11
共1页
|
1.
董海山.
高能炸药及相关物性能,1989
|
CSCD被引
193
次
|
|
|
|
2.
Gustavsen R L. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: wave forms from embedded gauges and comparison of four different material lots.
Journal of Applied Physics,2006,99(11):114907
|
CSCD被引
19
次
|
|
|
|
3.
Sheffield S A. In-situ magnetic gauging technique used at LANL-method and shock information obtained.
Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter,1999:1043-1048
|
CSCD被引
1
次
|
|
|
|
4.
Tarver C M. Manganin gauge and reactive flow modeling study of the shock initiation of PBX 9501.
Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter,2001:1043-1046
|
CSCD被引
1
次
|
|
|
|
5.
Vandersall K S. Shock initiation experiments on the TATB based explosive RX-03-GO with ignition and growth modeling.
Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter,2009
|
CSCD被引
2
次
|
|
|
|
6.
Wen L J. Effects of HMX particle size on the shock initiation of PBXC03 explosive.
International Journal of Nonlinear Sciences and Numerical Simulation,2012,13(2):189-194
|
CSCD被引
13
次
|
|
|
|
7.
温丽晶. 不同加载压力下炸药冲击起爆过程实验和数值模拟研究.
兵工学报,2013,34(3):283-288
|
CSCD被引
8
次
|
|
|
|
8.
温丽晶. HMX 基和 TATB 基 PBX 炸药爆轰成长差别的实验研究.
爆炸与冲击,2013(增刊):135-139
|
CSCD被引
1
次
|
|
|
|
9.
刘益儒.
多元混合PBX炸药冲击起爆细观反应流模型研究,2015
|
CSCD被引
2
次
|
|
|
|
10.
Duan Z P. Foil-like manganin gauges for dynamic high pressure measurements.
Measurement Science and Technology,2011,22(7):75206-75210
|
CSCD被引
8
次
|
|
|
|
11.
Grebenkin K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB).
Combustion Explosion and Shock Waves,2008,45(1):78-87
|
CSCD被引
17
次
|
|
|
|
|
|