大兴安岭中段晚三叠世四分组效应花岗岩的厘定及其地质意义
Delineation of the Late Triassic granitic pluton from the middle part of Greater Xing' an Mountains showing tetrad REE patterns and its geological implications
查看参考文献64篇
文摘
|
布敦化岩体位于中亚造山带东段大兴安岭地区的科尔沁右翼中旗,该岩体由中细粒二云母花岗岩和斑状中细粒白云母花岗岩组成。LA-MC-ICP-MS锆石U-Pb同位素年龄测试显示布敦化岩体形成于晚三叠世早期。地球化学分析表明,该岩体为弱过铝质-过铝质、高钾钙碱性系列,主量元素表现出高硅(73.73%~78.33%)、富碱(Na_2O + K_2O = 7.07%~9.06%)、低钙(CaO =0.01%~0.87%)、贫镁(MgO =0.12%~0.52%)的特征;稀土元素具有明显的Eu负异常和M型四分组效应配分型式。岩石学和地球化学特征显示布敦化岩体为高分异Ⅰ型花岗岩。Lu-Hf同位素研究显示其Ⅰ_(Hf)(t)值为7.0~12.4,二阶段附模式年龄(t_(DM2))为812~473Ma。结合邻区晚三叠世地质资料可知,布敦化岩体是在古亚洲洋闭合造山后伸展的构造背景下产生的,是晚元古代-早古生代地壳物质熔融的产物。布敦化地区的四分组效应花岗岩的稀土元素总量高、岩浆侵位后经历了强烈的分异演化,暗示布敦化地区可能具有较好的稀有金属矿的找矿前景。 |
其他语种文摘
|
The Budunhua pluton is located in the Horqin Right Wing Middle Banner, eastern part of the Central Asia Orogenic Belt. The pluton is mainly composed of medium-fine grained two-mica granites and porphyritic fine-grained muscovite granites. The LA-MC- ICP-MS U-Pb dating of the zircons indicate that the Budunhua pluton was emplaced in the Late Triassic. The rocks have high SiO_2 (73.73% ~78.33%) and (Na_2O + K_2O) (7.07% ~9.06%) contents,poor CaO (0.01% ~0.87%) and MgO (0.12% ~ 0.52%) contents, A/CNK = 1.02 ~1.23,belong to high-K calcalkaline series. The petrogeochemistry of rare earth element is characterized by strong depletion of Eu, and showing an M-type tetrad pattern. These characteristics indicate that the Budunhua pluton belongs to highly fractionated I-type granites. Zircon ε_(Hf)(t) values for the Budunhua pluton range from 7.0 to 12.4,two-stage model ages (t_(DM2)) ranging from 812Ma to 473Ma. Combining with regional geologic data, the primary magma of Budunhua pluton was derived from partial melting of juvenile crustal material from Neoproterozoic to Early Paleozoic, and formed in the extensional tectonic environment after the closure of the Paleo-Asian Ocean. The tetrad effect granite in Budunhua area with high ΣREE and evolution occurred after the intrusion of the primary magma, suggesting that the granite have prospects of REE mineralization. |
来源
|
岩石学报
,2016,32(9):2793-2806 【核心库】
|
关键词
|
布敦化
;
四分组效应
;
稀有金属矿
;
晚三叠世
;
大兴安岭
|
地址
|
1.
吉林大学地球科学学院, 长春, 130061
2.
中国地质调查局沈阳地质调查中心, 沈阳, 110034
3.
东北师范大学地理科学学院, 长春, 130024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国土资源部中国地质调查局项目
|
文献收藏号
|
CSCD:5789780
|
参考文献 共
64
共4页
|
1.
Andersen T. Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway: Implications for the composition and evolution of Precambrian lower crust in the Baltic Shield.
Lithos,2004,73(3/4):271-288
|
CSCD被引
22
次
|
|
|
|
2.
Boynton W V. Geochemistry of the rare earth elements: Meteorite studies.
Rare Earth Element Geochemistry,1984:63-114
|
CSCD被引
1337
次
|
|
|
|
3.
Chappell B W. Two contrasting granite types.
Pacific Geology,1974,8(2):173-174
|
CSCD被引
551
次
|
|
|
|
4.
Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites.
Lithos,1999,46(3):535-551
|
CSCD被引
621
次
|
|
|
|
5.
Chen B. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications.
Tectonophysics,2000,328(1/2):157-182
|
CSCD被引
383
次
|
|
|
|
6.
Fidelis I. The regularities in stability constants of some rare earth complexes.
Journal of Inorganic and Nuclear Chemistry,1966,28(1):185-188
|
CSCD被引
7
次
|
|
|
|
7.
Griffin W L. The Hf isotope composition of cratonic mantle LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.
Geochimica et Cosmochimica Acta,2000,64(1):133-147
|
CSCD被引
925
次
|
|
|
|
8.
Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu *, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites.
Geochimica et Cosmochimica Acta,1999,63(3/4):489-508
|
CSCD被引
198
次
|
|
|
|
9.
Jahn B M. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing' an Mountains in NE China.
Lithos,2001,59(4):171-198
|
CSCD被引
171
次
|
|
|
|
10.
Kawabe I. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones.
Geochemical Journal,1991,25(1):31-44
|
CSCD被引
12
次
|
|
|
|
11.
King P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia.
Journal of Petrology,1997,38(3):371-391
|
CSCD被引
596
次
|
|
|
|
12.
Koschek G. Origin and significance of the SEM cathodoluminescence from zircon.
Journal of Microscopy,1993,171(3):223-232
|
CSCD被引
180
次
|
|
|
|
13.
Li S C. Age and tectonic setting of volcanic rocks of the Tamulangou Formation in the Great Xing' an Range, NE China.
Journal of Asian Earth Sciences,2015,113:471-480
|
CSCD被引
10
次
|
|
|
|
14.
Liegeois J P. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization.
Lithos,1998,45(1/4):1-28
|
CSCD被引
206
次
|
|
|
|
15.
Liu Y. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan.
Chinese Science Bulletin,2007,52(18):2543-2550
|
CSCD被引
24
次
|
|
|
|
16.
Liu Y S. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.
Chinese Science Bulletin,2010,55(15):1535-1546
|
CSCD被引
1116
次
|
|
|
|
17.
Ludwig K R.
Squid 1.02: A User's Manual,2001:1-19
|
CSCD被引
4
次
|
|
|
|
18.
Maniar P D. Tectonic discrimination of granitoids.
GSA Bulletin,1989,101(5):635-643
|
CSCD被引
2063
次
|
|
|
|
19.
Masuda A. Lanthanide tetrad effect observed in marine environment.
Geochemical Journal,1979,13(1):19-22
|
CSCD被引
17
次
|
|
|
|
20.
Masuda A. Lanthanide tetrad effects in nature: Two mutually opposite types, W and M.
Geochemical Journal,1987,21(3):119-124
|
CSCD被引
42
次
|
|
|
|
|