气体混合炉中氧逸度控制
Oxygen fugacity buffering in a gas-mixing furnace
查看参考文献31篇
文摘
|
氧逸度是影响地质体系性质的物理化学变量之一。实验岩石学中常利用氧逸度可控的气体混合炉进行设定氧逸度下的实验。常用的混合气体组合包括CO_2-CO、CO_2-H_2和H_2-H_2O体系。然而,混合气体配比涉及到的较复杂的热力学计算以及老旧的热力学数据阻碍了该项技术在实验岩石学中的应用。本文根据新的物理化学数据,对不同混合气体体系(如CO_2-CO,CO_2-H_2和H_2-H_2O)温度-氧逸度-气体混合比例关系进行了重新计算和评估。另外,还计算了O_2-惰性气体、CO_2-O_2和H_2O-O_2体系,弥补了前人CO_2-CO、CO_2-H_2和H_2-H_2O体系不能控制高氧逸度(大于CO_2体系)的缺陷。最后,比较了应用新旧不同热力学数据库算出的结果,认为随着基础物理化学数据的不断更新,温度-氧逸度-气体混合比例关系也应不断更新。 |
其他语种文摘
|
Oxygen fugacity is a physicochemical parameter which has a great impact on the nature of geologic systems. In order to get meaningful results, oxygen fugacity must be buffered in experimental petrology. Gas-mixing furnace is a widely used apparatus for oxygen fugacity buffered high-temperature experiments at 1 atm. The CO_2-CO, CO_2-H_2, H_2-H_2O gas-mixing systems are commomly applied in gas-mixing furnaces and a desired oxygen fugacity value is reached by changing the flux ratio between the gases poured into the furnaces. However, the application of gas-mixing technique in experimental petrology has been hampered because the calculation of gas-mixing ratio needs a complex physicochemical consideration and also some thermodynamic data have been out of date. In this paper, re-calculation and evaluation on the relations of temperature-oxygen fugacity-gas mixture ratioes in the O_2-inert gas, CO_2-O_2 and H_2O-O_2 systems have been presented based on the updated physicochemical data. The results make up the previous defects. It is concluded that the accuracy of gas-mixing oxygen fugacity calculation depends on the choice of basic physicochemical data. It is pointed out that as the basic physicochemical data are renewed, gas-mixing oxygen fugacity calculation should be constantly updated. |
来源
|
地球化学
,2016,45(5):475-485 【核心库】
|
关键词
|
氧逸度
;
实验岩石学
;
气体混合炉
;
热力学计算
|
地址
|
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
中国科学院“百人计划”项目
;
国家自然科学基金
;
中国科学院广州地球化学研究所同位素地球化学国家重点实验室研发基金
|
文献收藏号
|
CSCD:5789569
|
参考文献 共
31
共2页
|
1.
Anser Li Z X. The constancy of upper mantle f_(o_2) through time inferred from V/Sc ratios in basalts.
Earth Planet Sci Lett,2004,228(3/4):483-493
|
CSCD被引
25
次
|
|
|
|
2.
Kessel R. Thermodynamic properties of the Pt-Fe system.
Am Mineral,2001,86(9):1003-1014
|
CSCD被引
1
次
|
|
|
|
3.
Jugo P J. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity.
Geochim Cosmochim Acta,2010,74(20):5926-5938
|
CSCD被引
35
次
|
|
|
|
4.
Jugo P J. Sulfur content at sulfide saturation in oxidized magmas.
Geology,2009,37(5):415-418
|
CSCD被引
65
次
|
|
|
|
5.
Sun W D. The link between reduced porphyry copper deposits and oxidized magmas.
Geochim Cosmochim Acta,2013,103:263-275
|
CSCD被引
109
次
|
|
|
|
6.
Wood B J. The effect of cation charge on crystal-melt partitioning of trace elements.
Earth Planet Sci Lett,2001,188(1/2):59-71
|
CSCD被引
3
次
|
|
|
|
7.
Blundy J. Partitioning of trace elements between crystals and melts.
Earth Planet Sci Lett,2003,210(3/4):383-397
|
CSCD被引
17
次
|
|
|
|
8.
Liu X C. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts.
Geochim Cosmochim Acta,2015,151:86-102
|
CSCD被引
14
次
|
|
|
|
9.
Mallmann G. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt.
J Petrol,2013,54(5):933-949
|
CSCD被引
13
次
|
|
|
|
10.
Papike J J. Valence state partitioning of V between pyroxene and melt for martian melt compositions Y 980459 and QUE 94201: The effect of pyroxene composition and crystal structure.
Am Mineral,2014,99:1175-1178
|
CSCD被引
1
次
|
|
|
|
11.
Liu L. Vanadium and niobium behavior in rutile as a function of oxygen fugacity: Evidence from natural samples.
Contrib Mineral Petrol,2014,167(6):1026
|
CSCD被引
10
次
|
|
|
|
12.
Xiong X L. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis.
Chem Geol,2005,218(3/4):339-359
|
CSCD被引
263
次
|
|
|
|
13.
Wood B J. Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by ~(57)Fe Mossbauer spectroscopy and resultant oxygen fugacities.
Geochim Cosmochim Acta,1989,53:1277-1291
|
CSCD被引
19
次
|
|
|
|
14.
Berry A J. Xanes calibration for the oxidation state of iron in a silicate glass.
Am Mineral,2003,88:967-977
|
CSCD被引
9
次
|
|
|
|
15.
Jayasuriya K D. A Mossbauer study of the oxidation state of Fe in silicate melts.
Am Mineral,2004,89(11/12):1597-1609
|
CSCD被引
5
次
|
|
|
|
16.
Dingwell D B. Redox viscometry of some Fe-bearing silicate melts.
Am Mineral,1991,76:1560-1562
|
CSCD被引
2
次
|
|
|
|
17.
Grove T L. Use of FePt alloys to eliminate the iron loss problem in 1 atmosphere gas mixing experiments: Theoretical and practical consider.
Contrib Mineral Petrol,1981,78(3):298-304
|
CSCD被引
4
次
|
|
|
|
18.
Huebner J S. Oxygen fugacity of furnace gas mixtures.
Am Mineral,1975,60:815-823
|
CSCD被引
2
次
|
|
|
|
19.
Orlando A. High temperature gas-mixing furnace: Experimental set up and applications to Earth Sciences.
Per Mineral,2006,75(2/3):233-240
|
CSCD被引
1
次
|
|
|
|
20.
Ren Z Y. The chemical structure of the Hawaiian mantle plume.
Nature,2005,436(7052):837-840
|
CSCD被引
25
次
|
|
|
|
|