青藏高原贡嘎山冰川区水体中Hg的空间分布及其源汇特征
Spatial distribution and source /sink characteristic of mercury in the water samples from the Mt. Gongga area in the Tibetan Plateau
查看参考文献32篇
文摘
|
通过测定青藏高原东北部贡嘎山冰川区流域尺度的雪样、冰川、地表水、地下渗透水的汞(Hg)含量及形态,发现流域水样的总Hg浓度介于1.74—17.8 ng·L~(-1)之间,其60%以上的形态为颗粒态汞; Hg的空间分布存在明显的海拔效应,即低温高海拔区域具有Hg的冷捕获和放大积累效应;从降雪到冰雪融化形成汇流河水再到地下渗透的过程中,Hg发生了重要的沉淀作用,土壤能够吸附大量的Hg.进一步通过主成分分析,建立多重线性回归模型,定量确定了水体环境中大气沉降的正贡献为163.3%,沉淀作用的负贡献为-69.8%.这些结果表明,大气沉降的颗粒物不仅是水体环境的Hg输入的主要来源,还是土壤Hg的重要来源,青藏高原可能是全球大气Hg循环中重要的沉降汇集区. |
其他语种文摘
|
The Tibetan Plateau has been considered as one of the sensitive ecosystems to suffer from global environmental changes and pollutants inputs. In this study,surface snow,glacial,surface water and seepage water were sampled and analyzed for total mercury (Hg~T) in the Mt. Gongga area,China. The total mercury concentrations in these samples ranged from 1.74 to 17.8 ng·L~(-1). Particle bound mercury predominated the atmospheric mercury inputs. The concentration of Hg~T increased with the increase of altitude,suggesting mercury accumulated by“cold trapping”in high elevated regions. In addition,Hg~T concentration exhibited a diseasing trend from surface snow, surface river,and to the underground seepage water. This reveals the sedimentation of mercury during runoff transportation occurred. Principal component analysis (PCA) and multiple linear regression (MLR) suggested that atmospheric deposition mainly contributed to the accumulation of Hg~T (163.3%),and sedimentation of Hg during runoff transportation was attributed to the decrease Hg~T (-69.8%). This study suggests sedimentation of Hg with particle is the main source for Hg accumulation in water bodies and soil,and the Tibetan Plateau may present a significant Hg sink in the global Hg cycling. |
来源
|
环境化学
,2016,35(8):1549-1556 【核心库】
|
DOI
|
10.7524/j.issn.0254-6108.2016.08.2015122301
|
关键词
|
青藏高原
;
Hg循环
;
大气沉降
;
海拔效应
;
土壤沉淀作用
;
全球变暖
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院成都山地灾害与环境研究所, 成都, 610041
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6108 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:5778063
|
参考文献 共
32
共2页
|
1.
WHO. World Health Organization (WHO),Environmental Health Criteria.
Inorganic Mercury,vol. 118,1991
|
CSCD被引
1
次
|
|
|
|
2.
Zhang Q G. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau.
Environ Sci Technol,2014,48:5220-5228
|
CSCD被引
7
次
|
|
|
|
3.
Fitzgerald W F. The case for atmospheric mercury contamination in remote areas.
Environmental Science & Technology,1998,32(1):1-7
|
CSCD被引
34
次
|
|
|
|
4.
Schuster P F. Atmospheric mercury deposition during the last 270 years:A glacial ice core record of natural and anthropogenic sources.
Environmental Science & Technology,2002,36(11):2303-2310
|
CSCD被引
21
次
|
|
|
|
5.
Swain E B. Increasing rates of atmospheric mercury deposition in midcontinental North America.
Science,1992,1257(5071):784-787
|
CSCD被引
14
次
|
|
|
|
6.
Allan R J. Atmospheric mercury contamination of remote aquatic ecosystems in Canada.
Water Sci Technol,1999,39(12):173-177
|
CSCD被引
2
次
|
|
|
|
7.
Mast M A. Mercury transport in a high-elevation watershed in Rocky Mountain National Park,Colorado.
Water,Air,Soil Pollut,2005,164(1/4):21-42
|
CSCD被引
1
次
|
|
|
|
8.
Krabbenhoft D P. Mercury loading and methylmercury production and cycling in high-altitude lakes from the western United States.
Water,Air,Soil Pollut,2002,2(2):233-249
|
CSCD被引
3
次
|
|
|
|
9.
Davidson D A. Orographic cold-trapping of persistent organic pollutants by vegetation in mountains of western Canada.
Environmental Science & Technology,2003,37:209-215
|
CSCD被引
10
次
|
|
|
|
10.
Jaward F M. PCBs and selected organochlorine compounds in Italian mountain air:The influence of altitude and forest ecosystem type.
Environmental Science & Technology,2005,39:3455-3463
|
CSCD被引
6
次
|
|
|
|
11.
Kang J H. Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas.
Science of the Total Environment,2009,408:57-63
|
CSCD被引
5
次
|
|
|
|
12.
Wang X P. Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma,China.
Chinese Science Bulletin,2007,52:1405-1413
|
CSCD被引
4
次
|
|
|
|
13.
Wang X P. The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier,Mt. Xixiabangma,central Himalayas.
Sci Total Environ,2008,394(1):134-143
|
CSCD被引
10
次
|
|
|
|
14.
Yang R. Accumulation features of organochlorine pesticides and heavy metals in fish from high mountain lakes and Lhasa River in the Tibetan Plateau.
Environment International,2007,33:151-156
|
CSCD被引
3
次
|
|
|
|
15.
Huang J. Seasonal variations,speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqentanglha,southern Tibetan Plateau.
Science of the Total Environment,2012,429:223-230
|
CSCD被引
10
次
|
|
|
|
16.
Loewen M. Atmospheric transport of mercury to the Tibetan Plateau.
Environmental Science & Technology,2007,41:7632-7638
|
CSCD被引
17
次
|
|
|
|
17.
US EPA.
Method 1631:Mercury in Water by Oxidation,Purge and Trap,and Cold Vapor Atomic Fluorescence Spectrometry. EPA-821-R-02-19,2002
|
CSCD被引
1
次
|
|
|
|
18.
阎海鱼. 天然水体中痕量汞的开矿分析方法研究.
分析测试学报,2003,22(5):10-13
|
CSCD被引
45
次
|
|
|
|
19.
Huang J. Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau.
Atmos Environ,2012,46:140-146
|
CSCD被引
9
次
|
|
|
|
20.
Wu G. Dust concentration and flux in ice cores from the Tibetan Plateau over the past few decades.
Tellus B,2010,62:197-206
|
CSCD被引
4
次
|
|
|
|
|