三氯生光降解动力学过程及其光降解产物生物毒性评价
Photolysis of Triclosan in Aqueous Solution and Toxic Assessment of Its Photolytical Products to Hydrobios
查看参考文献27篇
文摘
|
光化学降解是药品及个人护理用品(PPCPs)在环境中转化归趋的重要途径之一,同时光解过程对该类化合物的生态毒性产生重要影响。本研究以抗菌药物三氯生为模型化合物,研究在紫外光照射下,三氯生初始浓度、腐殖酸含量、pH、光强对其光降解动力学的复合影响。采用发光细菌、羊角月牙藻2个不同营养级生物的毒性响应变化评价三氯生母体化合物及光降解过程中毒性变化。研究表明:三氯生光降解遵循准一级反应动力学。初始浓度为10 μmol·L~(-1)、腐殖酸含量为0 mg·L~(-1),初始pH值为11、光强为0.44 mW·cm~(-2)时,该光化学降解反应体系三氯生有最高的反应速率和降解效率。三氯生光降解过程中产生了对受试生物有较高抑制作用的中间产物,随着光降解时间的延长,光降解中间产物的毒性逐渐降低,在光降解30 min后无显著毒性。 |
其他语种文摘
|
Photolysis is one of the most important pathways of pharmaceuticals and personal care products (PPCPs) elimination in natural environment. Photolysis can also influence the ecotoxicological effects of these PPCPs. The aim of the present study was to investigate the effects of selected variables on the photolysis kinetics of triclosan (TCS) and the toxic effects of TCS and its photolysis products to aquatic organisms. On basis of the study known, four experimental variables including initial TCS concentration, humic acid (HA) concentration, initial pH and light intensity were selected in the multivariable experimental design. The optimized conditions were as following: initial TCS concentration (10 μmol·L~(-1)), HA concentration at (0 μmol·L~(-1)), initial pH 11 and light intensity (0.44 mW·cm~2). The photolysis products of TCS are more toxic to Photobacterium phosphoreum and Selenastru capricornutum. The results presented in this study will provide basic data for the photolysis and ecotoxicological assessment of TCS. |
来源
|
生态毒理学报
,2016,11(2):586-592 【核心库】
|
DOI
|
10.7524/AJE.1673-5897.20151116001
|
关键词
|
三氯生
;
羊角月牙藻
;
光降解
;
生物毒性评价
|
地址
|
1.
暨南大学生命科学技术学院生态系, 广州, 510632
2.
中国科学院广州地球化学研究所, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-5897 |
学科
|
环境科学基础理论 |
基金
|
国家科技支撑计划项目
|
文献收藏号
|
CSCD:5766985
|
参考文献 共
27
共2页
|
1.
Boreen A L. Photodegradation of pharmaceuticals in the aquatic environment: A review.
Aquatic Sciences,2003,65(4):320-341
|
CSCD被引
23
次
|
|
|
|
2.
Katagi T. Photodegradation of pesticides on plant and soil surfaces.
Reviews of Environmental Contamination and Toxicology,2004,182:1-78
|
CSCD被引
9
次
|
|
|
|
3.
Liu Q T. Kinetics and degradation products for direct photolysis of β-blockers in water.
Environmental Science & Technology,2007,41(3):803-810
|
CSCD被引
10
次
|
|
|
|
4.
Arnold W A. Aquatic photochemistry of nitrofuran antibiotics.
Environmental- Science & Technology,2006,40(17):5422-5427
|
CSCD被引
27
次
|
|
|
|
5.
Graham D W. Fate and effects of enrofloxacin in aquatic systems under different light conditions.
Environmental Science & Technology,2005,39(23):9140-9146
|
CSCD被引
12
次
|
|
|
|
6.
Yin D Q. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria.
Chemosphere,2008,73(3):377-382
|
CSCD被引
59
次
|
|
|
|
7.
Choi K. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna.
Ecotoxicology,2008,17(1):37-45
|
CSCD被引
1
次
|
|
|
|
8.
Latch D E. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
Environmental Chemistry,2005,24(3):517-525
|
CSCD被引
1
次
|
|
|
|
9.
Daughton C G. Pharmaceuticals and personal care products in the environment: Agents of subtlechange?.
Environmental Health Perspectives,1999,107:907-938
|
CSCD被引
197
次
|
|
|
|
10.
Bhargava H. Triclosan:Applications and safety.
American Journal of Infection Control,1996,24(3):209-218
|
CSCD被引
19
次
|
|
|
|
11.
Cox A R. Efficacy of the antimicrobial agent triclosan in topical deodorant products: Recent developments in vivo.
Journal of the Society of Cosmetic Chemists,1987,38(4):223-231
|
CSCD被引
1
次
|
|
|
|
12.
Singer H. Triclosan:Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments.
Environmental Science & Technology,2002,36(23):4998-5004
|
CSCD被引
39
次
|
|
|
|
13.
Lam P K S. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China.
Water Research,2008,42(1/2):395-403
|
CSCD被引
64
次
|
|
|
|
14.
Ying G G. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants.
Environment International,2007,33(2):199-205
|
CSCD被引
31
次
|
|
|
|
15.
Lindstrom A. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater.
Environmental Science & Technology,2002,36(11):2322-2329
|
CSCD被引
18
次
|
|
|
|
16.
Morrall D. A field study of triclosan loss rates in river water (Cibolo Creek, TX).
Chemosphere,2004,54(5):653-660
|
CSCD被引
6
次
|
|
|
|
17.
Sanchez-Prado L. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction.
Chemosphere,2006,65(8):1338-1347
|
CSCD被引
8
次
|
|
|
|
18.
Wong-Wah-Chung P. Photochemical behaviour of triclosan in aqueous solutions: Kinetic and analytical studies.
Journal of Photochemistry and Photobiology A,2007,191(2/3):201-208
|
CSCD被引
6
次
|
|
|
|
19.
Yu J C. Photocatalytic oxidation of triclosan.
Chemosphere,2006,65(3):390-399
|
CSCD被引
12
次
|
|
|
|
20.
Aranami K. Photolytic degradation of triclosan in freshwater and seawater.
Chemosphere,2007,66(6):1052-1056
|
CSCD被引
17
次
|
|
|
|
|