基于CFD方法的地面光伏阵列风压时程特性研究
TIME HISTORY ANALYSIS OF WIND LOAD ON ARRAYED SOLAR PANELS BASED ON CFD SIMULATIONS
查看参考文献12篇
文摘
|
针对光伏阵列所受风压复杂且具有时程特性,采用CFD方法分析平均风及脉动风影响下多排阵列风荷载的时间历程,并与稳态场结果对比。研究表明:基于改进的谐波叠加法和Davenport谱编写的计算程序所得的脉动风信号在频域能量分布上与目标谱相近;流场中漩涡脱落使得平均风下壁面受力呈周期性振荡,其幅值除首排阵列外相对稳态场均有所增大,考虑脉动风后,各排受力幅值相对平均风又有所增大;脉动风影响下光伏板受力主频范围扩大,与结构固有频率更接近;顺风向各排所受风压存在一定的折减。光伏阵列排布及结构设计时,应基于脉动风计算结果划分风载荷区域并考虑防振抗振。 |
其他语种文摘
|
Based on the CFD method,transient wind loads on arrayed solar panels under average and fluctuating wind were studied. The fluctuating wind time-history was generated by compiling frequency-time transform programs based on the advanced WAWS method and Davenport spectrum. Comparing with the result of steady field, the analysis showed that transient loads under average wind appeared periodic vibration with time due to vortex shedding, and the amplitude is higher than steady result. Moreover, the amplitude increased after considering fluctuating wind. The main frequency spread out over a wider range under the influence of fluctuating wind,which is close to structure' s natural frequencies. Reduction exists between first and second rows along wind direction. Therefore, division of wind load regions and consideration of anti- vibration based on the fluctuating wind results are necessary when aligning the PV arrays and designing the structure of PV panels. |
来源
|
太阳能学报
,2016,37(7):1774-1779 【核心库】
|
关键词
|
CFD
;
光伏阵列
;
风压时程
;
脉动风
;
净力系数
;
频谱转换
|
地址
|
1.
中国建筑设计研究院(集团)中国建筑设计咨询有限公司, 北京, 100011
2.
北京港源建筑装饰工程有限公司, 北京, 100142
3.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0096 |
学科
|
能源与动力工程 |
文献收藏号
|
CSCD:5761201
|
参考文献 共
12
共1页
|
1.
Banks D.
How wind load studies will impact the solar industry,2014
|
CSCD被引
1
次
|
|
|
|
2.
Chung K. Reduction of wind uplift of a solar collector model.
Journal of Wind Engineering and Industrial Aerodynamics,2008,96(8/9):1294-1306
|
CSCD被引
2
次
|
|
|
|
3.
Bitsuamlak G. Evaluation of wind loads on solar panel modules using CFD.
Proceedings of the 5th International Symposium on Computational Wind Engineering(CWE2010),2010
|
CSCD被引
2
次
|
|
|
|
4.
Yu Y.
Numerical simulation of wind load on roof mounted solar panels,2012
|
CSCD被引
1
次
|
|
|
|
5.
Warsido W P. Influence of spacing parameters on the wind loading of solar array.
Journal of Fluids and Structures,2014,48(6):295-315
|
CSCD被引
15
次
|
|
|
|
6.
Vasies G. Numerical simulation of wind action on solar panel placed on flat roofs with and without parapet.
Bulletin of the Polytehnic Institute of Iasi-Construction and Architecture,2012,62(1):139-155
|
CSCD被引
1
次
|
|
|
|
7.
Simiu E.
Wind effects on structures:Fundementals and applications to design (3 edition),1996:35-48
|
CSCD被引
1
次
|
|
|
|
8.
王修琼. Davenport谱中系数K的计算公式及其工程应用.
同济大学学报(自然科学版),2002,30(7):849-852
|
CSCD被引
28
次
|
|
|
|
9.
孙振.
建筑结构风荷载的计算机模拟与分析,2007
|
CSCD被引
11
次
|
|
|
|
10.
Folland G B.
Fourier analysis and its applications,1992
|
CSCD被引
3
次
|
|
|
|
11.
Biswas G.
Turbulent flows: Fundamentals, experiments and modeling (1 edition),2002
|
CSCD被引
1
次
|
|
|
|
12.
Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,1994,32(8):1598-1605
|
CSCD被引
1312
次
|
|
|
|
|