基于IO-SDA模型的新疆能源消费碳排放影响机理分析
Influencing mechanism of energy-related carbon emissions in Xinjiang based on IO-SDA model
查看参考文献58篇
文摘
|
基于区域视角的能源消费碳排放影响机理分析,是有效实现节能降耗减排的重要研究议题。本文基于投入产出理论,通过构建“能源一经济一碳排放”混合型投入产出分析框架,利用扩展的IO-SDA模型,对新疆维吾尔自治区(简称新疆)1997-2007年能源消费碳排放的影响因素进行结构分解分析。结果显示:①新疆能源消费碳排放从1997年的2070.08万t增长到2007年的4034.33万t,碳排放的增长主要集中在能源资源生产与加工业和矿产资源开采与加工业。②碳排放影响因素的直接效应分析,人均GDP、最终需求结构、人口规模和生产结构的变化是引起碳排放增长的重要影响因素,碳排放强度的降低是这一时期遏制碳排放增长的重要影响因素,说明在经济规模和人口数量不断增长的同时,经济结构未得到有效优化,生产技术未得到有效的提升,导致新疆能源消费碳排放的快速增长。③碳排放影响因素的间接效应分析,省域间调出、固定资本形成总额和城镇居民消费对于新疆能源消费碳排放的变化影响显著。④碳密集产业部门的固定资产投资增加,能源资源型产品的省域间调出增长,使得区域间“隐含碳”转移效应十分显著。 |
其他语种文摘
|
Global warming and climate change are issues that have aroused widespread attention, and the need for a transition to a low-carbon economy has become the consensus of the international community. China has become one of the world's largest energy consumers, as well as one of the biggest emitters of greenhouse gases. This further highlights the importance and urgency of research on carbon emissions from energy consumption. Based on regional perspectives of the impacts of carbon emissions, the analysis of mechanisms responsible for carbon emissions has become an important research topic. Xinjiang, an important Chinese energy production base, is currently going through a period of strategic opportunities for rapid development. It is critical to ensure stable socioeconomic development as well as to achieve energy savings and meeting emission reductions targets, thus the harmonious development of "society- economy- energy- environment," is the key issue currently facing the region. This study, based on the input- output theory, presents a structural decomposition analysis of the factors affecting energy consumption and carbon emissions in Xinjiang from 1997-2007. This analysis employs a hybrid input- output analysis framework of "energy- economy- carbon emissions," and uses an extended IO- SDA model. The data for this study come from the Xinjiang input-output table for 1997-2002-2007. Population, economic, and energy source data are derived from the Statistical Yearbook of the Xinjiang Uygur Autonomous Region. (1) Xinjiang's carbon emissions from energy consumption increased from 20.70 million tons in 1997 to 40.34 million tons in 2007; carbon emissions growth was mainly concentrated in the production and processing of energy resources, the mining of mineral resources, and the processing industry. (2) The analysis of the direct effects of the influencing factors on carbon emissions shows that the change in per capita GDP, final demand structure, population scale, and production structure were the important factors causing an increase in carbon emissions, while the decrease in carbon emission intensity during this period was an important factor in stopping the growth of carbon emissions. This shows that while Xinjiang's economy and population were growing, the economic structure had not been effectively optimized and production technology had not been improved, which results in a rapid growth of carbon emissions from energy consumption. (3) An analysis of the indirect effects of the factors influencing carbon emissions shows that inter- provincial transfers, gross fixed capital formation, and consumption by urban residents had significant influence on the changes in carbon emissions from energy consumption in Xinjiang. (4) The growth of investments in fixed assets of carbon-intensive industry sectors, as well as the growth of inter-provincial transfers of energy resource products, makes the transfer effect of inter- area "implicit carbon" very significant. |
来源
|
地理学报
,2016,71(7):1105-1118 【核心库】
|
DOI
|
10.11821/dlxb201607002
|
关键词
|
碳排放
;
IO-SDA模型
;
影响因素
;
新疆
|
地址
|
1.
广州地理研究所, 广东省地理空间信息技术与应用公共实验室, 广州, 510070
2.
中国科学院新疆生态与地理研究所, 乌鲁木齐, 830011
3.
新疆师范大学地理科学与旅游学院, 乌鲁木齐, 830054
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家自然科学基金青年基金
;
广东省科学院引进高层次领军人才专项资金项目
;
广东省科学院平台环境与能力建设专项资金项目
|
文献收藏号
|
CSCD:5756312
|
参考文献 共
58
共3页
|
1.
Streets D G. Climate change: Recent reductions in China's greenhouse gas emissions.
Science,2001,294(5548):1835-1837
|
CSCD被引
46
次
|
|
|
|
2.
Cyranoski D. China struggles to square growth and emissions.
Nature,2007,446(7139):954-955
|
CSCD被引
5
次
|
|
|
|
3.
Qiu J. China asks world to step up on climate.
Nature,2008,456(7219):151
|
CSCD被引
2
次
|
|
|
|
4.
Zeng Ning. Climate change: The Chinese challenge.
Science,2008,319(5864):730-731
|
CSCD被引
23
次
|
|
|
|
5.
Qiu J. China's climate target: Is it achievable?.
Nature,2009,462(7273):550-551
|
CSCD被引
2
次
|
|
|
|
6.
Feng Kuishuang. Outsourcing CO_2 within China.
Proceedings of the National Academy of Sciences,2013,110(28):11654-11659
|
CSCD被引
8
次
|
|
|
|
7.
Qiu J. China unveils green targets.
Nature,2011,471(7337):149
|
CSCD被引
1
次
|
|
|
|
8.
Liu Zhu. A low-carbon road map for China.
Nature,2013,500(7461):143-145
|
CSCD被引
27
次
|
|
|
|
9.
Malakoff D. China's peak carbon pledge raises pointed questions.
Science,2014,346(6212):903
|
CSCD被引
5
次
|
|
|
|
10.
Guan Dabo. The gigatonne gap in China's carbon dioxide inventories.
Nature Clim. Change,2012,2(9):672-675
|
CSCD被引
15
次
|
|
|
|
11.
陶玉国. 江苏省区域旅游业碳排放测度及其因素分解.
地理学报,2014,69(10):1438-1448
|
CSCD被引
29
次
|
|
|
|
12.
赵荣钦. 中原经济区县域碳收支空间分异及碳平衡分区.
地理学报,2014,69(10):1425-1437
|
CSCD被引
50
次
|
|
|
|
13.
赵荣钦. 中国不同产业空间的碳排放强度与碳足迹分析.
地理学报,2010,65(9):1048-1057
|
CSCD被引
93
次
|
|
|
|
14.
赵荣钦. 南京城市系统碳循环与碳平衡分析.
地理学报,2012,67(6):758-770
|
CSCD被引
42
次
|
|
|
|
15.
Geng Yong. Exploring driving factors of energy- related CO_2 emissions in Chinese provinces: A case of Liaoning.
Energy Policy,2013,60:820-826
|
CSCD被引
10
次
|
|
|
|
16.
Jotzo F. Decomposing the 2010 global carbon dioxide emissions rebound.
Nature Climate Change,2012,2(4):213-214
|
CSCD被引
2
次
|
|
|
|
17.
程叶青. 中国能源消费碳排放强度及其影响因素的空间计量.
地理学报,2013,68(10):1418-1431
|
CSCD被引
93
次
|
|
|
|
18.
苏泳娴. 基于夜间灯光数据的中国能源消费碳排放特征及机理.
地理学报,2013,68(11):1513-1526
|
CSCD被引
91
次
|
|
|
|
19.
Zhou N. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model.
Energy Policy,2013,53:51-62
|
CSCD被引
15
次
|
|
|
|
20.
Wang Ke. Regional allocation of CO_2 emissions allowance over provinces in China by 2020.
Energy Policy,2013,54:214-229
|
CSCD被引
12
次
|
|
|
|
|