帮助 关于我们

返回检索结果

时间尺度上Hamilton系统的Noether理论
Noether Theory for Hamiltonian System on Time Scales

查看参考文献24篇

张毅 *  
文摘 提出并研究时间尺度上Hamilton系统的Noether对称性与守恒量问题.建立了时间尺度上Hamilton原理,导出了相应的Hamilton正则方程.基于时间尺度上Hamilton作用量在群的无限小变换下的不变性,建立了时间尺度上Hamilton系统的Noether定理.定理的证明分成两步:第一步,在时间不变的无限小变换群下给出证明;第二步,利用时间重新参数化技术得到了一般无限小变换群下的定理.给出了经典和离散两种情况下Hamilton系统的Noether守恒量.文末举例说明结果的应用.
其他语种文摘 The Noether symmetry and the conserved quantity for a Hamiltonian system on time scales are proposed and studied in this paper. The Hamilton principle on time scales is established, and corresponding Hamilton canonical equations are deduced. Based upon the invariance of the Hamilton action on time scales under the infinitesimal transformations of a group, the Noether theorem for the Hamiltonian system on time scales is established. The proof of the theorem is composed of two steps. First, we prove the Noether theorem under the infinitesimal transformations of a special one-parameter group without varying the time. Second using the technique of time-re-parameterization, we obtain the Noether theorem in its general form. The Noether-type conserved quantities for Hamiltonian system in both the classical and the discrete cases are given. At the end of the paper, two examples are given to illustrate the application of the theorem.
来源 力学季刊 ,2016,37(2):214-224 【扩展库】
DOI 10.15959/j.cnki.0254-0053.2016.02.002
关键词 Hamilton力学 ; 时间尺度 ; 对称性 ; 守恒量
地址

苏州科技大学土木工程学院, 江苏, 苏州, 215011

语种 中文
文献类型 研究性论文
ISSN 0254-0053
学科 力学
基金 国家自然科学基金
文献收藏号 CSCD:5744157

参考文献 共 24 共2页

1.  Bohner M. Dynamic equations on time scales: an introduction with applications,2001 CSCD被引 74    
2.  Bohner M. Advances in dynamic equations on time scales,2003 CSCD被引 85    
3.  Agarwal R. Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics,2002,141(1):1-26 CSCD被引 64    
4.  Bohner M. Euler-type boundary value problems in quantum calculus. International Journal of Applied Mathematics & Statistics,2007,9(J07):19-23 CSCD被引 6    
5.  Gravagne I A. Bandwidth reduction for controller area networks using adaptive sampling. Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:5250-5255 CSCD被引 5    
6.  Marks R J. Nonregressivity in switched linear circuits and mechanical systems. Mathematical and Computer Modelling,2006,43(11/12):1383-1392 CSCD被引 6    
7.  Atici F M. An application of time scales to economics. Mathematical and Computer Modelling,2006,43(7/8):718-726 CSCD被引 20    
8.  Girejko E. Delta-nabla optimal control problems. Journal of Vibration and Control,2011,17(11):1634-1643 CSCD被引 7    
9.  梅凤翔. 李群和李代数对约束力学系统的应用,1999 CSCD被引 179    
10.  梅凤翔. 约束力学系统的对称性与守恒量,2004 CSCD被引 146    
11.  Chen X W. Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Physics Letters A,2005,337(4/6):274-278 CSCD被引 58    
12.  张毅. Hamilton系统的一类新型守恒律. 力学季刊,2002,23(3):392-396 CSCD被引 7    
13.  葛伟宽. 变质量完整力学系统的Hojmab守恒量. 力学季刊,2004,25(4):573-576 CSCD被引 2    
14.  Fu J L. Noether symmetries of discrete nonholonomic dynamical systems. Physics Letters A,2009,373(4):409-412 CSCD被引 21    
15.  张毅. 完整力学系统的共形不变性与守恒量. 力学季刊,2009,30(2):216-221 CSCD被引 15    
16.  Wu H B. Symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. Chinese Physics B,2010,19(3):030303 CSCD被引 13    
17.  Fang J H. A new type of conserved quantity induced by symmetries of Lagrange system. Physics Letters A,2010,374(17/18):1806-1811 CSCD被引 11    
18.  Jia L Q. Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dynamics,2012,69(4):1807-1812 CSCD被引 5    
19.  Luo S K. A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mechanica,2013,224(1):71-84 CSCD被引 16    
20.  Zhai X H. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics,2014,77(1/2):73-86 CSCD被引 5    
引证文献 17

1 祖启航 时间尺度上Nabla 变分问题的非完整力学系统的Noether 理论 中山大学学报. 自然科学版(中英文),2017,56(1):58-65
CSCD被引 2

2 宋传静 分数阶 Birkhoff 系统 Noether 对称性的摄动与绝热不变量 力学季刊,2017,38(1):43-49
CSCD被引 2

显示所有17篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号