时间尺度上Hamilton系统的Noether理论
Noether Theory for Hamiltonian System on Time Scales
查看参考文献24篇
文摘
|
提出并研究时间尺度上Hamilton系统的Noether对称性与守恒量问题.建立了时间尺度上Hamilton原理,导出了相应的Hamilton正则方程.基于时间尺度上Hamilton作用量在群的无限小变换下的不变性,建立了时间尺度上Hamilton系统的Noether定理.定理的证明分成两步:第一步,在时间不变的无限小变换群下给出证明;第二步,利用时间重新参数化技术得到了一般无限小变换群下的定理.给出了经典和离散两种情况下Hamilton系统的Noether守恒量.文末举例说明结果的应用. |
其他语种文摘
|
The Noether symmetry and the conserved quantity for a Hamiltonian system on time scales are proposed and studied in this paper. The Hamilton principle on time scales is established, and corresponding Hamilton canonical equations are deduced. Based upon the invariance of the Hamilton action on time scales under the infinitesimal transformations of a group, the Noether theorem for the Hamiltonian system on time scales is established. The proof of the theorem is composed of two steps. First, we prove the Noether theorem under the infinitesimal transformations of a special one-parameter group without varying the time. Second using the technique of time-re-parameterization, we obtain the Noether theorem in its general form. The Noether-type conserved quantities for Hamiltonian system in both the classical and the discrete cases are given. At the end of the paper, two examples are given to illustrate the application of the theorem. |
来源
|
力学季刊
,2016,37(2):214-224 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2016.02.002
|
关键词
|
Hamilton力学
;
时间尺度
;
对称性
;
守恒量
|
地址
|
苏州科技大学土木工程学院, 江苏, 苏州, 215011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5744157
|
参考文献 共
24
共2页
|
1.
Bohner M.
Dynamic equations on time scales: an introduction with applications,2001
|
CSCD被引
74
次
|
|
|
|
2.
Bohner M.
Advances in dynamic equations on time scales,2003
|
CSCD被引
85
次
|
|
|
|
3.
Agarwal R. Dynamic equations on time scales: a survey.
Journal of Computational and Applied Mathematics,2002,141(1):1-26
|
CSCD被引
64
次
|
|
|
|
4.
Bohner M. Euler-type boundary value problems in quantum calculus.
International Journal of Applied Mathematics & Statistics,2007,9(J07):19-23
|
CSCD被引
6
次
|
|
|
|
5.
Gravagne I A. Bandwidth reduction for controller area networks using adaptive sampling.
Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:5250-5255
|
CSCD被引
5
次
|
|
|
|
6.
Marks R J. Nonregressivity in switched linear circuits and mechanical systems.
Mathematical and Computer Modelling,2006,43(11/12):1383-1392
|
CSCD被引
6
次
|
|
|
|
7.
Atici F M. An application of time scales to economics.
Mathematical and Computer Modelling,2006,43(7/8):718-726
|
CSCD被引
20
次
|
|
|
|
8.
Girejko E. Delta-nabla optimal control problems.
Journal of Vibration and Control,2011,17(11):1634-1643
|
CSCD被引
7
次
|
|
|
|
9.
梅凤翔.
李群和李代数对约束力学系统的应用,1999
|
CSCD被引
179
次
|
|
|
|
10.
梅凤翔.
约束力学系统的对称性与守恒量,2004
|
CSCD被引
146
次
|
|
|
|
11.
Chen X W. Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system.
Physics Letters A,2005,337(4/6):274-278
|
CSCD被引
58
次
|
|
|
|
12.
张毅. Hamilton系统的一类新型守恒律.
力学季刊,2002,23(3):392-396
|
CSCD被引
7
次
|
|
|
|
13.
葛伟宽. 变质量完整力学系统的Hojmab守恒量.
力学季刊,2004,25(4):573-576
|
CSCD被引
2
次
|
|
|
|
14.
Fu J L. Noether symmetries of discrete nonholonomic dynamical systems.
Physics Letters A,2009,373(4):409-412
|
CSCD被引
21
次
|
|
|
|
15.
张毅. 完整力学系统的共形不变性与守恒量.
力学季刊,2009,30(2):216-221
|
CSCD被引
15
次
|
|
|
|
16.
Wu H B. Symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type.
Chinese Physics B,2010,19(3):030303
|
CSCD被引
13
次
|
|
|
|
17.
Fang J H. A new type of conserved quantity induced by symmetries of Lagrange system.
Physics Letters A,2010,374(17/18):1806-1811
|
CSCD被引
11
次
|
|
|
|
18.
Jia L Q. Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system.
Nonlinear Dynamics,2012,69(4):1807-1812
|
CSCD被引
5
次
|
|
|
|
19.
Luo S K. A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems.
Acta Mechanica,2013,224(1):71-84
|
CSCD被引
16
次
|
|
|
|
20.
Zhai X H. Noether symmetries and conserved quantities for Birkhoffian systems with time delay.
Nonlinear Dynamics,2014,77(1/2):73-86
|
CSCD被引
5
次
|
|
|
|
|