帮助 关于我们

返回检索结果

基于夜间灯光和人口密度数据的京津冀GDP空间化对比
Comparison of GDP Spatialization in Beijing-Tianjin-Hebei Based on Night Light and Population Density Data

查看参考文献35篇

王旭   吴吉东 *   王海   李宁  
文摘 国内生产总值(GDP)是衡量地区经济发展水平的重要指标,GDP的空间化可以为灾害风险分析等多学科交叉研究提供基础数据。空间化代用数据的选择是社会经济统计数据空间化的关键,本文以京津冀地区作为研究区,将夜间灯光、全球人口密度(LandScan)和亚洲人口密度(AsiaPop)空间分布信息作为代用数据,将市级GDP统计数据空间展布到栅格单元,以绝对误差、相对误差和均方根误差为指标,利用县级统计数据对展布结果进行误差分析,并对比3种数据对GDP空间模拟的表达效果。结果表明:相对于夜间灯光和LandScan数据,AsiaPop模拟得到的综合误差最小;基于夜间灯光和LandScan的GDP空间展布误差格局比较接近,即存在经济较发达的市辖区GDP值被低估、市郊区县GDP被高估的误差"两极区"倾向,而基于AsiaPop的GDP空间展布误差格局与经济发展水平关系不密切。因此,利用单一代用数据很难合理地反映经济活动的空间分布,综合夜间灯光、人口密度、道路和建筑物等多源空间数据是提高GDP空间展布精度的发展趋势。
其他语种文摘 As an important indicator in measuring the economic development level of a region, GDP spatialization is of great significance to study the socio-economic heterogeneity. The ancillary spatial density data selection is the key technique in controlling the GDP spatialization′s accuracy. In this paper, the prefectural GDP statistics is distributed to grid cells according to the spatial distribution information of GDP such as the population density (LandScan, AsiaPop) and night light data in Beijing-Tianjin-Hebei. Moreover, the absolute errors and relative errors of the GDP disaggregation at county-level are both calculated in order to compare the errors among the three different ancillary data as mentioned above. These results can provide a reasonable reference to ancillary spatial density data selection in GDP disaggregation. The results show that, the spatial distributions of the three types of ancillary spatial density data for GDP have revealed their own advantages and disadvantages. Comparing with both of the night light and the LandScan data, the AsiaPop simulation generally has the smallest error, especially in the suburban districts and rural areas of Beijing where the GDP tends to be overestimated, while the GDP is often underestimated in the economically developed city centers. For the LandScan simulation, six counties have presented a relative error of more than 200%, as the LandScan data are concentrated in Beijing and Tianjin, while the suburban districts and counties have also been overestimated. The AsiaPop simulation has only three counties (which locate in Tianjin) presenting a relative error being more than 200%. Because of the spatial heterogeneity of the economic activities, the GDP disaggregation error will increase with respect to the refinement of the administrative units, therefore, using the single-generation data to reasonably reflect the spatial distribution of economic activities is difficult, we need to take advantage of the distribution data such as the night light, roads, housing distribution and cell phone signals to improve the GDP disaggregation′s accuracy in future, and to reflects the GDP distribution characteristics in a more detailed manner. High-quality exposure data not only provide the basic data for the study of spatial analysis of natural disaster risk, but also provide a reference for other multidisciplinary research fields; meanwhile, the comprehensive application of using both the multi-source remote sensing data and the statistics data is the trend for socio-economic data spatialization.
来源 地球信息科学学报 ,2016,18(7):969-976 【核心库】
DOI 10.3724/SP.J.1047.2016.00969
关键词 GDP空间化 ; 京津冀 ; 夜间灯光 ; 人口密度
地址

北京师范大学, 环境演变与自然灾害教育部重点实验室;;地表过程与资源生态国家重点实验室, 北京, 100875

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 社会科学总论;测绘学
基金 教育部-国家外国专家局高等学校创新引智计划 ;  国家重大科学研究计划项目 ;  国家自然科学基金项目
文献收藏号 CSCD:5734580

参考文献 共 35 共2页

1.  马静. 我国社会统计数据空间化研究综述. 未来与发展,2008(3):25-28 CSCD被引 6    
2.  史培军. 制定国家综合减灾战略 提高巨灾风险防范能力. 自然灾害学报,2008,17(1):1-8 CSCD被引 11    
3.  刘红辉. 基于遥感的全国GDP 1km格网的空间化表达. 地球信息科学,2005,7(2):120-123 CSCD被引 53    
4.  史培军. 中国自然灾害风险地图集,2011 CSCD被引 27    
5.  史培军. 五论灾害系统研究的理论与实践. 自然灾害学报,2009,18(5):1-9 CSCD被引 107    
6.  吕安民. 面积内插方法及其在GIS中应用. 地球信息科学,2001,5(4):25-29 CSCD被引 4    
7.  Fisher P F. Modelling the errors in areal interpolation between zonal systems by Monte Carlo simulation. Environment and Planning A,1995,27(2):211-224 CSCD被引 8    
8.  Goodchild M F. A framework for the areal interpolation of socioeconomic data. Environment and Planning A,1993,25(3):383-397 CSCD被引 27    
9.  Eicher C L. Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science,2001,28(2):125-138 CSCD被引 10    
10.  江东. 人口数据空间化的处理方法. 地理学报,2002,57(B12):70-75 CSCD被引 6    
11.  叶宇. 人口数据空间化表达与应用. 地球信息科学学报,2006,8(2):59-65 CSCD被引 7    
12.  钟凯文. 土地可持续利用评价中GDP数据空间化方法的研究. 测绘信息与工程,2007,32(3):10-12 CSCD被引 16    
13.  黄莹. 新疆天山北坡干旱区GDP时空模拟. 地理科学进展,2009,28(4):494-502 CSCD被引 13    
14.  何春阳. 基于夜间灯光数据的环渤海地区城市化过程. 地理学报,2005,60(3):409-417 CSCD被引 51    
15.  王鹤饶. DMSP/OLS数据应用研究综述. 地理科学进展,2012,31(1):11-19 CSCD被引 43    
16.  韩向娣. 基于夜间灯光和土地利用数据的GDP空间化. 遥感技术与应用,2012,27(3):396-405 CSCD被引 45    
17.  Shi K. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sensing,2014,6(2):1705-1724 CSCD被引 37    
18.  Cauwels P. Dynamics and spatial distribution of global nighttime lights. EPJ Data Science,2014,3(1):1-26 CSCD被引 4    
19.  Ma Q. Quantifying spatiotemporal patterns of urban impervious surfaces in China: an improved assessment using nighttime light data. Landscape and Urban Planning,2014,130:36-49 CSCD被引 11    
20.  Fan J. Comparative estimation of urban development in China's cities using socioeconomic and DMSP/OLS night light data. Remote Sensing,2014,6(8):7840-7856 CSCD被引 4    
引证文献 11

1 阿孜古丽·合尼 基于夜间灯光数据的天山北坡城市群第二、三产业GDP 空间化模拟 应用科学学报,2019,37(1):87-98
CSCD被引 3

2 于丙辰 基于夜光遥感与POI数据空间耦合关系的南海港口城市空间结构研究 地球信息科学学报,2018,20(6):854-861
CSCD被引 17

显示所有11篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号