离子强度对苝与溶解有机质疏水性组分相互作用的影响
Effects of Ion Strength on Interaction Between Perylene and Hydrophobic Fractions of Dissolved Matter (DOM) Isolated from Lake Water
查看参考文献18篇
文摘
|
自然界水体(如地下水、湖泊、河流及海洋)中的溶解有机质(DOM)因具有显著的生态及环境功能而受到人们的广泛关注:DOM能够影响环境中污染物的命运,比如疏水性有机污染物(HOCs)与天然有机质结合后,其迁移途径、生物可利用性和毒性受到明显的控制,其对环境中生物的危害性减弱。本文运用荧光猝灭法测定了多环芳烃苝(perylene)与提取自红枫湖天然水体的DOM有机组分,计算了苝与DOM有机组分相互作用的分配系数(K_(DOC)),探讨了影响相互作用的因素以及水体离子强度对分配系数的影响。研究认为,红枫湖DOM有机组分对多环芳烃苝的吸附能力与其芳香结构单元有很强的相关性,log K_(DOC)值与有机组分在280 nm处的摩尔吸收(ε_(280))和分子质量有线性度较高的正比关系。一般而言,离子强度对分配系数的影响比较复杂,就总体趋势而言,增加离子强度有利于对PAHs吸附能力的提高。 |
其他语种文摘
|
Dissolved organic matter (DOM) in nature waters (e.g. ground water, lake, river and ocean) receives much attention because of its remarkable ecology and the environment function. More importantly, DOM can affect the fate of the contaminants in environment. For instance, interactions between contaminants and DOM can change their transport, toxicity and bioavailability, attenuating their harm for organisms. In this work, we fractionated large amounts of lake water into hydrophobic DOM-fractions and determined the partitioning coefficients (K_(DOC)) of perylene binding to DOM-fractions by florescence quenching titration. Effect of ion strengthens of the solutions on K_(DOC) of perylene was also examined. Results show that KDOC values of perylene was positive correlated with molecular weights and UV absorbance at 280 nm (ε_(280)) and KDOC increased with increasing ion strengthens, suggesting that the binding is controlled by hydrophobic interactions. |
来源
|
矿物学报
,2016,36(2):295-300 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2016.02.020
|
关键词
|
溶解有机质
;
有机组分
;
疏水性有机污染物
;
荧光猝灭法
;
离子强度
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5720504
|
参考文献 共
18
共1页
|
1.
吴丰昌. 天然有机质及其在地表环境中的重要性.
湖泊科学,2008,20(1):1-12
|
CSCD被引
120
次
|
|
|
|
2.
黄泽春. 污泥中的DOM对中国土壤中Cd吸附的影响I.纬度地带性差异.
环境科学学报,2002,22(3):349-353
|
CSCD被引
16
次
|
|
|
|
3.
Akkanen J. Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicals.
Environmental Toxicological Chemistry,2001,20:2303-2308
|
CSCD被引
3
次
|
|
|
|
4.
Carter C W. Binding of DDT to dissolved humic materials.
Environmental Science and Technology,1982,16:735-740
|
CSCD被引
14
次
|
|
|
|
5.
Gauthier T D. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials.
Environmental Science and Technology,1986,20:1162-1166
|
CSCD被引
23
次
|
|
|
|
6.
Pan B. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration.
Environmental Science and Technology,2008,42:1594-1599
|
CSCD被引
28
次
|
|
|
|
7.
Schlautman M A. Effects of aquatic chemistry on the binding of polycylic aromatic- hydrocarbons by dissolved humic materials.
Environmental Science and Technology,1993,27:961-969
|
CSCD被引
27
次
|
|
|
|
8.
Leeheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.
Environmental Science and Technology,1981,15:578-587
|
CSCD被引
93
次
|
|
|
|
9.
Mei Y. Binding characteristics of perylene, phenanthrene and anthracene to different DOM fractions from lake water.
Journal of Environmental Sciences,2009,21:414-423
|
CSCD被引
15
次
|
|
|
|
10.
Maoz A. Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions.
Water Research,2010,44:981-989
|
CSCD被引
10
次
|
|
|
|
11.
Xing B S. Dual-mode sorption of low-polarity compounds in galssy poly(viny chloride) and soil organic matter.
Environmental Science and Technology,1997,31:792-799
|
CSCD被引
57
次
|
|
|
|
12.
Kang S. Phenanthrene sorption to sequentially extracted soil humic acids and humins.
Environmental Science and Technology,2005,39:134-140
|
CSCD被引
35
次
|
|
|
|
13.
Laor Y. Evidence for nonlinear binding of PAHs to dissolved humic acids.
Environmental Science and Technology,2002,36:955-961
|
CSCD被引
13
次
|
|
|
|
14.
Polubesova T. Binding of pyrene to hydrophobic fractions of dissolved organic matter: effects of polyvalent metal complexation.
Environmental Science and Technology,2007,41(15):5389-5394
|
CSCD被引
13
次
|
|
|
|
15.
Gunasekara A. Identification and characterization of sorption NOMains in soil organic matter using structurally modified humic acids.
Environmental Science and Technology,2003,37:852-858
|
CSCD被引
3
次
|
|
|
|
16.
Gauthier T D. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values.
Environmental Science Technology,1987,21:243-248
|
CSCD被引
27
次
|
|
|
|
17.
Peuravuori J. Binding of pyrene on lake aquatic humic matter: the role of structural descriptors.
Analytica Chimica Acta,2001,429:75-89
|
CSCD被引
9
次
|
|
|
|
18.
Jones K D. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic.
Environmental Science and Technology,1999,33:580-587
|
CSCD被引
19
次
|
|
|
|
|