钛合金切削用Ti_(1-x)Al_xN涂层的制备及其切削性能研究
PREPARATION OF Ti_(1-x)Al_xN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE
查看参考文献31篇
文摘
|
采用磁控溅射法制备了不同Al含量的Ti_(1-x)Al_xN涂层.经XRD, SEM, EDX和纳米压痕仪分析发现,Al含量在0.50~ 0.58 (原子分数,下同)之间时,Ti_(1-x)Al_xN涂层为(111)择优生长的fcc结构.当Al含量增加到0.63时,涂层中有六方纤锌矿结构的AIN生成,涂层硬度降低.另外,随着Al含量的增加,涂层表面颗粒尺寸变大,涂层变疏松.钛合金切削实验表明,涂层刀具的磨损形式主要为黏结磨损和崩刃.在低速切削(65 m/min)时,Ti_(0.50)Al_(0.50)N涂层刀具的切削性能略好于无涂层刀具,并且都好于Ti_(0.42)Al_(0.58)N和Ti_(0.37)Al_(0.63)N涂层刀具.在高速切削(100 m/min)时,Ti_(0.50)Al_(0.50)N涂层刀具有最好的切削性能,其切削距离比无涂层刀具提高4倍多.这主要因为Ti_(0.50)Al_(0.50)N涂层表面致密、硬度高,在钛合金切削时形成的切屑瘤致密而整齐. |
其他语种文摘
|
High-strength lightweight titanium alloy structural materials have been widely used in aerospace and other industry. However, the titanium is hard to machine due to its characteristics of low thermal conductivity, high chemical affinity and low elastic modulus. Coating tools provide a solution to overcome the problem of cutting titanium alloy. Tii_xALN coating is one of the most popular candidates in cutting titanium alloy. However, the cutting performance and wear mechanism of the sputtering Tii_xALN coating should be studied further in order to meet the demands of cutting titanium alloy. In this work, Ti_(1-x)Al_xN coatings with different Al contents have been prepared by magnetron sputtering. Microstructure and mechanical properties of the coatings were examined by XRD, SEM, EDX and nanoindenter. Results show that the coatings is a single fcc structure with a (111) preferred orientation when x is in the range of 0.50~0.58 (atomic fraction). When the Al content is 0.63,the hexagonal AIN is formed in the coating and the hardness declines. In addition, the surface particle size of Ti_(1-x)Al_xN coatings increases and the coating density decreases with increasing the Al content. The results of titanium cutting experiment indicate that the tool wear is mainly adhesive wear and chipping. The cutting performances of Ti_(0.50)Al_(0.50)N coated tool is slightly better than uncoated tool and are much better than those of Ti_(0.42)Al_(0.58) and Ti_(0.37)Al_(0.63)N coated tools at a lower cutting speed (65 m/min). The cutting performance ofTi_(0.50)Al_(0.50)N coated tool is the best at a higher cutting speed of 100 m/min and is four times larger than that of uncoated tool. The excellent cutting performance of Ti_(0.50)Al_(0.50)N coating is mainly due to its high surface density and high hardness, which lead to the formation of regular and dense built- up edge during titanium cutting. Therefore, Ti_(0.50)Al_(0.50)N coating with a (111) preferred orientation, dense surface and relatively low Al content is recommended in high speed turning titanium. |
来源
|
金属学报
,2016,52(6):741-746 【核心库】
|
DOI
|
10.11900/0412.1961.2015.00454
|
关键词
|
Ti_(1-x)Al_xN
;
磁控溅射
;
硬质涂层
;
钛合金切削
;
磨损机理
|
地址
|
1.
东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819
2.
中国石油大庆石化分公司炼油厂, 大庆, 163714
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:5720183
|
参考文献 共
31
共2页
|
1.
Davim J.
Machining of Titanium Alloy,2014:2
|
CSCD被引
1
次
|
|
|
|
2.
Biksa A.
Tribo Int,2010,43:1491
|
CSCD被引
4
次
|
|
|
|
3.
Ghani J A.
Ceram Int,2013,39:4449
|
CSCD被引
6
次
|
|
|
|
4.
Hsieh J H.
Surf Coat Technol,1998,108/109:132
|
CSCD被引
16
次
|
|
|
|
5.
Park I W.
J Mater Process Technol,2002,130/131:254
|
CSCD被引
4
次
|
|
|
|
6.
李明升. 电弧离子镀(Ti,Al)N复合薄膜的结构和性能研究.
金属学报,2003,39:55
|
CSCD被引
20
次
|
|
|
|
7.
Wahlstrom U.
Thin Solid Films,1993,235:62
|
CSCD被引
11
次
|
|
|
|
8.
Zhao S S.
Surf Coat Technol,2008,202:5170
|
CSCD被引
7
次
|
|
|
|
9.
时婧. Si含量对电弧离子镀Ti-A1-Si-N薄膜组织结构和力学性能的影响.
金属学报,2012,48:1349
|
CSCD被引
14
次
|
|
|
|
10.
Yoo Y H.
Thin Solid Films,2008,516:3544
|
CSCD被引
11
次
|
|
|
|
11.
von Richthofen A.
Thin Solid Films,1998,312:190
|
CSCD被引
6
次
|
|
|
|
12.
Kester D J.
J Mater Res,1993,8:1938
|
CSCD被引
1
次
|
|
|
|
13.
Long Y.
Cream Int,2014,40:9889
|
CSCD被引
1
次
|
|
|
|
14.
Su G S.
Wear,2012,289:124
|
CSCD被引
1
次
|
|
|
|
15.
Deng J X.
Int J Refract Met Hard Mater,2012,35:10
|
CSCD被引
23
次
|
|
|
|
16.
Makino Y.
Mater Sci Eng, A,1995,192/193:77
|
CSCD被引
1
次
|
|
|
|
17.
袁建鹏. Al含量对多弧离子镀Ti_(1-x)Al_xN涂层微观结构及性能的影响.
有色金属,2009,61(4):26
|
CSCD被引
2
次
|
|
|
|
18.
Smith I J.
Surf Coat Technol,1997,90:164
|
CSCD被引
6
次
|
|
|
|
19.
Ali F.
J Ceram Process Res,2013,14:529
|
CSCD被引
1
次
|
|
|
|
20.
Wei Y Q.
Appl Surf Sci,2011,257:7881
|
CSCD被引
15
次
|
|
|
|
|