新型超高强度热冲压用钢的热变形行为及本构关系
Hot Deformation Behavior and Constitutive Model of Advanced Ultra-high Strength Hot Stamping Steel
查看参考文献18篇
文摘
|
利用Gleeble-1500D热模拟机对新型超高强度热冲压用钢22MnB5Nb进行等温单向拉伸实验,研究了其在变形温度为650~950℃,应变速率为0.1,1.0,10s~(-1)下的热变形行为,并采用3种本构分析方法,即基于传统拟合回归方法的Arrhenius型、考虑材料常数应变补偿的Arrhenius型和本工作新提出的基于Quasi-Newton BFGS算法的Arrhenius型本构方程来描述22MnB5Nb钢的热变形行为。结果表明:22MnB5Nb钢表现出典型的加工硬化和动态回复软化行为,变形温度与应变速率均对其流变应力有较大影响;3种方程均可以准确预测实验钢的峰值流变应力,其中,Quasi-Newton BFGS算法具有可一次性求解所有材料参数、求解步骤简单和预测精度最高(R=0.99578,R_e=11.03MPa,E=2.48%)的特点,考虑材料常数应变补偿的Arrhenius型本构方程预测精度相对较低,但能直接预测不同变形条件下的流变应力曲线且可以较好地预测变形过程中的加工硬化效应、动态回复软化效应和应变速率强化效应。 |
其他语种文摘
|
The hot deformation behavior of the advanced ultra-high strength hot stamping steel 22MnB5Nb was studied through the isothermal uniaxial tensile tests at 650-950℃ and strain rates of 0.1, 1.0s~(-1) and 10s~(-1) by Gleeble 1500D system. The conventional Arrhenius-type hyperbolic sine equation, the Arrhenius-type model considering the material constant strain compensation and the new Arrhenius-type model based on Quasi-Newton BFGS algorithm were established to describe the high-temperature deformation behavior of 22MnB5Nb. The results indicate that 22MnB5Nb steel shows typical work hardening and dynamic recovery softening behavior during hot tensile. And the strain rate and deformation temperature have significant effects on the flow stress. The peak flow stress values predicted by these models are highly consistent with the experimental values, and the Quasi-Newton BFGS algorithm can solve all the material parameters in one time and it is simpler in calculation process and has the highest accurate(R=0.99578, R_e=11.03MPa, E=2.48%), while, the Arrhenius-type model considering material constant strain compensation with lower accuracy, but can directly predicts not only the flow stress curve under different deformation conditions, but also the work hardening behavior, the dynamic recovery behavior and the strain rate strengthening effect of the experimental steel during the deformation process. |
来源
|
材料工程
,2016,44(5):15-21 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2016.05.003
|
关键词
|
热冲压用钢
;
热变形行为
;
本构模型
;
Nb
|
地址
|
1.
长江大学机械工程学院, 非常规油气湖北省协同创新中心, 湖北, 荆州, 434023
2.
北京科技大学材料科学与工程学院, 北京, 100083
3.
汽车用钢开发与应用技术国家重点实验室(宝钢), 汽车用钢开发与应用技术国家重点实验室(宝钢), 上海, 201900
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
长江青年基金资助项目
;
长江大学油气钻完井工具研究中心创新基金资助项目
|
文献收藏号
|
CSCD:5709456
|
参考文献 共
18
共1页
|
1.
Karbasian H. A review on hot stamping.
Journal of Materials Processing Technology,2010,210(15):2103-2118
|
CSCD被引
227
次
|
|
|
|
2.
Naderi M. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures.
Materials Science & Engineering: A,2008,478(1/2):130-139
|
CSCD被引
53
次
|
|
|
|
3.
Li H. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model.
Materials Science & Engineering: A,2013,580:330-348
|
CSCD被引
7
次
|
|
|
|
4.
Nikravesh M. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel.
Materials Science & Engineering: A,2012,540:24-29
|
CSCD被引
30
次
|
|
|
|
5.
Naderi M. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping.
Journal of Materials Processing Technology,2011,211(6):1117-1125
|
CSCD被引
35
次
|
|
|
|
6.
Zhou J. Two constitutive descriptions of boron steel 22MnB5 at high temperature.
Materials & Design,2014,63(2):738-748
|
CSCD被引
6
次
|
|
|
|
7.
Zhang S. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels.
Materials Science & Engineering: A,2015,626:136-143
|
CSCD被引
7
次
|
|
|
|
8.
Samantaray D. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel.
Materials & Design,2010,31(2):981-984
|
CSCD被引
42
次
|
|
|
|
9.
Xiao X. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behavior in 12Cr3WV steel.
Computational Materials Science,2012,62:227-234
|
CSCD被引
17
次
|
|
|
|
10.
Li H Y. Artificial neural network and constitutive equations to predict the hot deformation behavior of modified 2.25Cr-1Mo steel.
Materials & Design,2012,42:192-197
|
CSCD被引
6
次
|
|
|
|
11.
王进. 38MnVS6非调质钢两种高温本构模型的对比.
材料工程,2014(2):81-86
|
CSCD被引
8
次
|
|
|
|
12.
Zeng Z. Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures.
Materials Science & Engineering: A,2009,513/514:83-90
|
CSCD被引
4
次
|
|
|
|
13.
魏海莲. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析.
金属学报,2013,49(6):731-738
|
CSCD被引
19
次
|
|
|
|
14.
Mirzadeh H. Hot deformation behavior of a medium carbon microalloyed steel.
Materials Science & Engineering: A,2011,528:3876-3882
|
CSCD被引
39
次
|
|
|
|
15.
Meysami M. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test.
Materials Science & Engineering: A,2011,528:3049-3055
|
CSCD被引
12
次
|
|
|
|
16.
郑漫庆. 应变速率循环法构建TC4-DT钛合金本构方程.
材料工程,2014(8):32-35
|
CSCD被引
4
次
|
|
|
|
17.
Zhang Y. Link between and comparison and combination of Zhang neural network and Quasi-Newton BFGS method for time-varying quadratic minimization.
IEEE Trans Syst Man Cybern B Cybern,2012,43(2):490-503
|
CSCD被引
1
次
|
|
|
|
18.
Leithead W E. O(N2)-operation approximation of covariance matrix inverse in Gaussian process regression based on Quasi-Newton BFGS method.
Communications in Statistics Simulation & Computation,2007,36(2):367-380
|
CSCD被引
5
次
|
|
|
|
|