Strain rate-dependent high temperature compressive deformation characteristics of ultrafine-grained pure aluminum produced by ECAP
等通道转角挤压超细晶纯铝高温压缩变形特点的应变速率依赖性
查看参考文献27篇
文摘
|
To explore the effect of strain rate e& on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain rates e& were systematically studied through compression tests and microscopic observations. The increase in ? eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473-573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10~(-3) s~(-1); however, at 1×10~(-2) s~(-1), cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ? inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures. |
其他语种文摘
|
为了探索应变速率对超细晶材料高温变形特点的影响,通过压缩实验以及显微观察,系统研究在不同温度和应变速率下等通道转角挤压Al的变形和损伤特点以及显微微组织。结果表明:应变速率的提高消除了等通道转角挤压Al在变形温度T≤ 473 K时表现出的应变软化现象,并且大大提高了变形温度在473~573 K范围的屈服强度和流变应力。等通道转角挤压Al的塑性变形主要由剪切变形控制。当应变速率为1×10~(-3) s~(-1)时,变形温度T ≥ 473 K时可观察到沿剪切带形成了大量裂纹,并且二次剪切带基本消失。而当应变速率为1×10~(-2) s~(-1)时,只有在变形温度低于473 K时才能观察到沿剪切带形成的裂纹,并且当压缩温度T≥ 473 K时,二次剪切带变得更加清晰。等通道转角挤压Al的显微组织主要由亚晶组成,应变速率的提高抑制了亚晶的长大,从而导致高温屈服强度和流变应力的提高。 |
来源
|
Transactions of Nonferrous Metals Society of China
,2016,26(4):966-973 【核心库】
|
DOI
|
10.1016/S1003-6326(16)64193-6
|
关键词
|
equal channel angular pressing (ECAP)
;
pure Al
;
strain rate
;
high temperature compression
;
deformation
;
damage
;
microstructure
|
地址
|
1.
Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819
2.
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870
3.
Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Shenyang, 110819
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5702929
|
参考文献 共
27
共2页
|
1.
Yang Q. Deformation behavior of ultrafine-grain (UFG) AZ31B Mg at room temperature.
Acta Materialia,2006,54:5159-5170
|
CSCD被引
29
次
|
|
|
|
2.
Fang D R. Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys.
Materials Science and Engineering A,2006,426:305-313
|
CSCD被引
11
次
|
|
|
|
3.
Chen Bin. Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties.
Materials Science and Engineering A,2008,483/484:113-116
|
CSCD被引
22
次
|
|
|
|
4.
Ei-Danaf E A. Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes.
Materials Science and Engineering A,2008,487:189-200
|
CSCD被引
10
次
|
|
|
|
5.
Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals.
International Journal of Fatigue,2009,31:1476-1489
|
CSCD被引
11
次
|
|
|
|
6.
Molodova X. Thermal stability of ECAP processed pure copper.
Materials Science and Engineering A,2007,460/461:204-213
|
CSCD被引
18
次
|
|
|
|
7.
Li X W. Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing.
Physica Status Solidi (a),2004,201:R119-R122
|
CSCD被引
2
次
|
|
|
|
8.
Yu Zhaoyuan. Temperaturedependent deformation and damage behavior of ultrafine-grained copper under uniaxial compression.
Physica Status Solidi (a),2008,205:2417-2421
|
CSCD被引
7
次
|
|
|
|
9.
Long Fengwu. Compressive deformation behaviors of coarse-and ultrafine-grained pure titanium at different temperatures: A comparative study.
Materials Transactions,2011,52:1617-1622
|
CSCD被引
10
次
|
|
|
|
10.
Jiang Qingwei. Microstructural instability of ultrafine-grained copper under annealing and high-temperature deformation.
Acta Metallurgica Sinica, (in Chinese),2009,45:873-979
|
CSCD被引
2
次
|
|
|
|
11.
Li Xiaowu. Effect of strain rate on the high-temperature compressive deformation behavior of ultrafine-grained copper.
International Journal of Modern Physics B,2009,23:1758-1763
|
CSCD被引
2
次
|
|
|
|
12.
May J. Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation.
Scripta Materialia,2005,53:189-194
|
CSCD被引
16
次
|
|
|
|
13.
Conrad H. On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE).
Scripta Materialia,2005,53:581-584
|
CSCD被引
3
次
|
|
|
|
14.
Li Y J. Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu.
Acta Materialia,2004,52:5009-5018
|
CSCD被引
10
次
|
|
|
|
15.
Dalla Torre F H. Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes.
Scripta Materialia,2004,51:367-371
|
CSCD被引
4
次
|
|
|
|
16.
Farrokh B. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling.
International Journal of Plasticity,2009,25:715-732
|
CSCD被引
25
次
|
|
|
|
17.
Suo Tao. Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate.
Mechanics of Materials,2013,61:1-10
|
CSCD被引
6
次
|
|
|
|
18.
Gray III G T. Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr.
Nanostructured Materials,1997,9:477-480
|
CSCD被引
3
次
|
|
|
|
19.
Tang Zhongbin. Uniaxial compressive behavior of equal channel angular pressing Al at wide temperature and strain rate range.
Transactions of Nonferrous Metals Society of China,2014,24:2447-2452
|
CSCD被引
3
次
|
|
|
|
20.
Li X W. Surface deformation features in ultrafine-grained copper cyclically stressed at different temperatures.
Materials Transactions,2005,46:3077-3080
|
CSCD被引
2
次
|
|
|
|
|