Experimental study on combustion characteristics of Chinese RP-3 kerosene
查看参考文献24篇
文摘
|
In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally investigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K, 420 K and 450 K, and over the equivalence ratio range of 0.6-1.6. Furthermore, the laminar combustion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually. The highest laminar combustion speed is measured under fuel rich condition (the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar combustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed, increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Furthermore, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within 10% deviation under certain conditions. |
来源
|
Chinese Journal of Aeronautics
,2016,29(2):375-385 【核心库】
|
DOI
|
10.1016/j.cja.2016.02.003
|
关键词
|
Combustion mechanism
;
Combustion stability
;
Laminar combustion speed
;
Markstein length
;
RP-3 kerosene
|
地址
|
1.
School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024
2.
Shenyang Aerospace University, Liaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System, Shenyang, 110136
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1000-9361 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5695765
|
参考文献 共
24
共2页
|
1.
Kumar K. Laminar flame speeds and extinction limits of conventional and alternative jet fuels.
Fuel,2011,90(3):1004-1011
|
CSCD被引
18
次
|
|
|
|
2.
Bosschaart K J. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method.
Combust Flame,2004,136(3):261-269
|
CSCD被引
25
次
|
|
|
|
3.
Weiss M. Experimental study of Markstein length effects on laminar flamelet velocity in turbulent premixed flames.
Combust Flame,2008,154(4):671-691
|
CSCD被引
6
次
|
|
|
|
4.
Gu X J. Laminar burning velocity and Markstein lengths of methane-air mixtures.
Combust Flame,2000,121(2):41-58
|
CSCD被引
53
次
|
|
|
|
5.
Eisazadeh-Far K. Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures.
Fuel,2010,89(5):1041-1049
|
CSCD被引
4
次
|
|
|
|
6.
Eisazadeh-Far K. The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames.
Fuel,2011,90(4):1476-1486
|
CSCD被引
4
次
|
|
|
|
7.
Kelley A P.
Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures and temperatures. Report No.: AIAA-2010-0774,2010
|
CSCD被引
1
次
|
|
|
|
8.
Fuller C C.
Effects of vitiation and pressure on laminar flame speeds of n-decane. Report No.: AIAA-2012-0167,2012
|
CSCD被引
1
次
|
|
|
|
9.
Singh D.
Laminar burning speeds and Markstein lengths of n-decane/air, n-decane/O_2/He, jet-A/air and S-8/air flames. Report No.: AIAA-2010-0951,2010
|
CSCD被引
1
次
|
|
|
|
10.
Vukadinovic V. Influence of pressure and temperature on laminar burning velocity and Markstein length of kerosene Jet A-1: Experimental and numerical study.
Fuel,2013,111(3):401-410
|
CSCD被引
9
次
|
|
|
|
11.
Hu E J. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames.
Int J Hydrogen Energy,2009,34:4876-4888
|
CSCD被引
39
次
|
|
|
|
12.
Bradley D. The measurement of laminar burning velocities and Markstein lengths for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion chamber.
Combust Flame,1998,115(1/2):126-144
|
CSCD被引
47
次
|
|
|
|
13.
Liang Y T. Experimental study of the effect of nitrogen addition on gas explosion.
J Loss Prev Process Ind,2013,26(1):1-9
|
CSCD被引
12
次
|
|
|
|
14.
Bradley D. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study.
Combust Flame,1996,104(1/2):176-198
|
CSCD被引
56
次
|
|
|
|
15.
Huang Z H. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures.
Fuel,2007,86(15):2360-2366
|
CSCD被引
25
次
|
|
|
|
16.
Burke M P. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames.
Combust Flame,2009,156(4):771-779
|
CSCD被引
22
次
|
|
|
|
17.
Oran E S. Chemical-acoustic interactions in combustion systems.
Prog Energy Combust Sci,1985,11(4):253-276
|
CSCD被引
1
次
|
|
|
|
18.
Jomaas G. On transition to cellularity in expanding spherical flames.
J Fluid Mech,2007,583:1-26
|
CSCD被引
14
次
|
|
|
|
19.
Gu X. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures.
Combust Flame,2010,157(2):2318-2325
|
CSCD被引
1
次
|
|
|
|
20.
Law C K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment.
Proc Combust Inst,2005,30(1):159-167
|
CSCD被引
21
次
|
|
|
|
|